-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathestimator.py
403 lines (332 loc) · 16 KB
/
estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import logging
import slidingwindow as sw
import cv2
import numpy as np
import tensorflow as tf
import time
from tf_pose import common
from tf_pose.common import CocoPart
from tf_pose.tensblur.smoother import Smoother
import tensorflow.contrib.tensorrt as trt
try:
from tf_pose.pafprocess import pafprocess
except ModuleNotFoundError as e:
print(e)
print('you need to build c++ library for pafprocess. See : https://github.com/ildoonet/tf-pose-estimation/tree/master/tf_pose/pafprocess')
exit(-1)
logger = logging.getLogger('TfPoseEstimator')
logger.setLevel(logging.INFO)
ch = logging.StreamHandler()
formatter = logging.Formatter('[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s')
ch.setFormatter(formatter)
logger.addHandler(ch)
class Human:
"""
body_parts: list of BodyPart
"""
__slots__ = ('body_parts', 'pairs', 'uidx_list', 'score')
def __init__(self, pairs):
self.pairs = []
self.uidx_list = set()
self.body_parts = {}
for pair in pairs:
self.add_pair(pair)
self.score = 0.0
@staticmethod
def _get_uidx(part_idx, idx):
return '%d-%d' % (part_idx, idx)
def add_pair(self, pair):
self.pairs.append(pair)
self.body_parts[pair.part_idx1] = BodyPart(Human._get_uidx(pair.part_idx1, pair.idx1),
pair.part_idx1,
pair.coord1[0], pair.coord1[1], pair.score)
self.body_parts[pair.part_idx2] = BodyPart(Human._get_uidx(pair.part_idx2, pair.idx2),
pair.part_idx2,
pair.coord2[0], pair.coord2[1], pair.score)
self.uidx_list.add(Human._get_uidx(pair.part_idx1, pair.idx1))
self.uidx_list.add(Human._get_uidx(pair.part_idx2, pair.idx2))
def is_connected(self, other):
return len(self.uidx_list & other.uidx_list) > 0
def merge(self, other):
for pair in other.pairs:
self.add_pair(pair)
def part_count(self):
return len(self.body_parts.keys())
def get_max_score(self):
return max([x.score for _, x in self.body_parts.items()])
def parts(self):
return self.body_parts
def part_nums(self):
return self.body_parts.keys()
def __str__(self):
return ' '.join([str(x) for x in self.body_parts.values()])
def __repr__(self):
return self.__str__()
class BodyPart:
"""
part_idx : part index(eg. 0 for nose)
x, y: coordinate of body part
score : confidence score
"""
__slots__ = ('uidx', 'part_idx', 'x', 'y', 'score')
def __init__(self, uidx, part_idx, x, y, score):
self.uidx = uidx
self.part_idx = part_idx
self.x, self.y = x, y
self.score = score
def get_part_name(self):
return CocoPart(self.part_idx)
def getData(self):
return (self.x, self.y, self.score)
def __str__(self):
return 'BodyPart:%d-(%.2f, %.2f) score=%.2f' % (self.part_idx, self.x, self.y, self.score)
def __repr__(self):
return self.__str__()
'''def partData(self):
return [self.part_idx, self.x, self.y, self.score]'''
class PoseEstimator:
def __init__(self):
pass
@staticmethod
def estimate_paf(peaks, heat_mat, paf_mat):
pafprocess.process_paf(peaks, heat_mat, paf_mat)
humans = []
for human_id in range(pafprocess.get_num_humans()):
human = Human([])
is_added = False
for part_idx in range(18):
c_idx = int(pafprocess.get_part_cid(human_id, part_idx))
if c_idx < 0:
continue
is_added = True
human.body_parts[part_idx] = BodyPart(
'%d-%d' % (human_id, part_idx), part_idx,
float(pafprocess.get_part_x(c_idx)) / heat_mat.shape[1],
float(pafprocess.get_part_y(c_idx)) / heat_mat.shape[0],
pafprocess.get_part_score(c_idx)
)
if is_added:
score = pafprocess.get_score(human_id)
human.score = score
humans.append(human)
return humans
class TfPoseEstimator:
# TODO : multi-scale
def __init__(self, graph_path, target_size=(320, 240), tf_config=None):
self.target_size = target_size
# load graph
logger.info('loading graph from %s(default size=%dx%d)' % (graph_path, target_size[0], target_size[1]))
with tf.gfile.GFile(graph_path, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
self.graph = tf.get_default_graph()
trt_graph = trt.create_inference_graph(input_graph_def=graph_def,outputs=["Openpose/concat_stage7"], max_batch_size=1,max_workspace_size_bytes=1 << 25,precision_mode='FP16',minimum_segment_size=50)
print(trt_graph)
tf.import_graph_def(trt_graph, name='TfPoseEstimator')
self.persistent_sess = tf.Session(graph=self.graph, config=tf_config)
writer = tf.summary.FileWriter('/tmp/estimator',self.persistent_sess.graph)
writer.flush()
# for op in self.graph.get_operations():
# print(op.name)
# for ts in [n.name for n in tf.get_default_graph().as_graph_def().node]:
# print(ts)
self.tensor_image = self.graph.get_tensor_by_name('TfPoseEstimator/image:0')
self.tensor_output = self.graph.get_tensor_by_name('TfPoseEstimator/Openpose/concat_stage7:0')
self.tensor_heatMat = self.tensor_output[:, :, :, :19]
self.tensor_pafMat = self.tensor_output[:, :, :, 19:]
self.upsample_size = tf.placeholder(dtype=tf.int32, shape=(2,), name='upsample_size')
self.tensor_heatMat_up = tf.image.resize_area(self.tensor_output[:, :, :, :19], self.upsample_size,
align_corners=False, name='upsample_heatmat')
self.tensor_pafMat_up = tf.image.resize_area(self.tensor_output[:, :, :, 19:], self.upsample_size,
align_corners=False, name='upsample_pafmat')
smoother = Smoother({'data': self.tensor_heatMat_up}, 25, 3.0)
gaussian_heatMat = smoother.get_output()
max_pooled_in_tensor = tf.nn.pool(gaussian_heatMat, window_shape=(3, 3), pooling_type='MAX', padding='SAME')
self.tensor_peaks = tf.where(tf.equal(gaussian_heatMat, max_pooled_in_tensor), gaussian_heatMat,
tf.zeros_like(gaussian_heatMat))
self.heatMat = self.pafMat = None
# warm-up
self.persistent_sess.run(tf.variables_initializer(
[v for v in tf.global_variables() if
v.name.split(':')[0] in [x.decode('utf-8') for x in
self.persistent_sess.run(tf.report_uninitialized_variables())]
])
)
self.persistent_sess.run(
[self.tensor_peaks, self.tensor_heatMat_up, self.tensor_pafMat_up],
feed_dict={
self.tensor_image: [np.ndarray(shape=(target_size[1], target_size[0], 3), dtype=np.float32)],
self.upsample_size: [target_size[1], target_size[0]]
}
)
self.persistent_sess.run(
[self.tensor_peaks, self.tensor_heatMat_up, self.tensor_pafMat_up],
feed_dict={
self.tensor_image: [np.ndarray(shape=(target_size[1], target_size[0], 3), dtype=np.float32)],
self.upsample_size: [target_size[1] // 2, target_size[0] // 2]
}
)
self.persistent_sess.run(
[self.tensor_peaks, self.tensor_heatMat_up, self.tensor_pafMat_up],
feed_dict={
self.tensor_image: [np.ndarray(shape=(target_size[1], target_size[0], 3), dtype=np.float32)],
self.upsample_size: [target_size[1] // 4, target_size[0] // 4]
}
)
def __del__(self):
# self.persistent_sess.close()
pass
@staticmethod
def _quantize_img(npimg):
npimg_q = npimg + 1.0
npimg_q /= (2.0 / 2 ** 8)
# npimg_q += 0.5
npimg_q = npimg_q.astype(np.uint8)
return npimg_q
@staticmethod
def draw_humans(npimg, humans, imgcopy=False):
if imgcopy:
npimg = np.copy(npimg)
image_h, image_w = npimg.shape[:2]
centers = {}
for human in humans:
# draw point
for i in range(common.CocoPart.Background.value):
if i not in human.body_parts.keys():
continue
body_part = human.body_parts[i]
center = (int(body_part.x * image_w + 0.5), int(body_part.y * image_h + 0.5))
centers[i] = center
cv2.circle(npimg, center, 3, common.CocoColors[i], thickness=3, lineType=8, shift=0)
# draw line
for pair_order, pair in enumerate(common.CocoPairsRender):
if pair[0] not in human.body_parts.keys() or pair[1] not in human.body_parts.keys():
continue
# npimg = cv2.line(npimg, centers[pair[0]], centers[pair[1]], common.CocoColors[pair_order], 3)
cv2.line(npimg, centers[pair[0]], centers[pair[1]], common.CocoColors[pair_order], 3)
return npimg
def _get_scaled_img(self, npimg, scale):
get_base_scale = lambda s, w, h: max(self.target_size[0] / float(h), self.target_size[1] / float(w)) * s
img_h, img_w = npimg.shape[:2]
if scale is None:
if npimg.shape[:2] != (self.target_size[1], self.target_size[0]):
# resize
npimg = cv2.resize(npimg, self.target_size, interpolation=cv2.INTER_CUBIC)
return [npimg], [(0.0, 0.0, 1.0, 1.0)]
elif isinstance(scale, float):
# scaling with center crop
base_scale = get_base_scale(scale, img_w, img_h)
npimg = cv2.resize(npimg, dsize=None, fx=base_scale, fy=base_scale, interpolation=cv2.INTER_CUBIC)
o_size_h, o_size_w = npimg.shape[:2]
if npimg.shape[0] < self.target_size[1] or npimg.shape[1] < self.target_size[0]:
newimg = np.zeros(
(max(self.target_size[1], npimg.shape[0]), max(self.target_size[0], npimg.shape[1]), 3),
dtype=np.uint8)
newimg[:npimg.shape[0], :npimg.shape[1], :] = npimg
npimg = newimg
windows = sw.generate(npimg, sw.DimOrder.HeightWidthChannel, self.target_size[0], self.target_size[1], 0.2)
rois = []
ratios = []
for window in windows:
indices = window.indices()
roi = npimg[indices]
rois.append(roi)
ratio_x, ratio_y = float(indices[1].start) / o_size_w, float(indices[0].start) / o_size_h
ratio_w, ratio_h = float(indices[1].stop - indices[1].start) / o_size_w, float(
indices[0].stop - indices[0].start) / o_size_h
ratios.append((ratio_x, ratio_y, ratio_w, ratio_h))
return rois, ratios
elif isinstance(scale, tuple) and len(scale) == 2:
# scaling with sliding window : (scale, step)
base_scale = get_base_scale(scale[0], img_w, img_h)
npimg = cv2.resize(npimg, dsize=None, fx=base_scale, fy=base_scale, interpolation=cv2.INTER_CUBIC)
o_size_h, o_size_w = npimg.shape[:2]
if npimg.shape[0] < self.target_size[1] or npimg.shape[1] < self.target_size[0]:
newimg = np.zeros(
(max(self.target_size[1], npimg.shape[0]), max(self.target_size[0], npimg.shape[1]), 3),
dtype=np.uint8)
newimg[:npimg.shape[0], :npimg.shape[1], :] = npimg
npimg = newimg
window_step = scale[1]
windows = sw.generate(npimg, sw.DimOrder.HeightWidthChannel, self.target_size[0], self.target_size[1],
window_step)
rois = []
ratios = []
for window in windows:
indices = window.indices()
roi = npimg[indices]
rois.append(roi)
ratio_x, ratio_y = float(indices[1].start) / o_size_w, float(indices[0].start) / o_size_h
ratio_w, ratio_h = float(indices[1].stop - indices[1].start) / o_size_w, float(
indices[0].stop - indices[0].start) / o_size_h
ratios.append((ratio_x, ratio_y, ratio_w, ratio_h))
return rois, ratios
elif isinstance(scale, tuple) and len(scale) == 3:
# scaling with ROI : (want_x, want_y, scale_ratio)
base_scale = get_base_scale(scale[2], img_w, img_h)
npimg = cv2.resize(npimg, dsize=None, fx=base_scale, fy=base_scale, interpolation=cv2.INTER_CUBIC)
ratio_w = self.target_size[0] / float(npimg.shape[1])
ratio_h = self.target_size[1] / float(npimg.shape[0])
want_x, want_y = scale[:2]
ratio_x = want_x - ratio_w / 2.
ratio_y = want_y - ratio_h / 2.
ratio_x = max(ratio_x, 0.0)
ratio_y = max(ratio_y, 0.0)
if ratio_x + ratio_w > 1.0:
ratio_x = 1. - ratio_w
if ratio_y + ratio_h > 1.0:
ratio_y = 1. - ratio_h
roi = self._crop_roi(npimg, ratio_x, ratio_y)
return [roi], [(ratio_x, ratio_y, ratio_w, ratio_h)]
def _crop_roi(self, npimg, ratio_x, ratio_y):
target_w, target_h = self.target_size
h, w = npimg.shape[:2]
x = max(int(w * ratio_x - .5), 0)
y = max(int(h * ratio_y - .5), 0)
cropped = npimg[y:y + target_h, x:x + target_w]
cropped_h, cropped_w = cropped.shape[:2]
if cropped_w < target_w or cropped_h < target_h:
npblank = np.zeros((self.target_size[1], self.target_size[0], 3), dtype=np.uint8)
copy_x, copy_y = (target_w - cropped_w) // 2, (target_h - cropped_h) // 2
npblank[copy_y:copy_y + cropped_h, copy_x:copy_x + cropped_w] = cropped
else:
return cropped
def inference(self, npimg, resize_to_default=True, upsample_size=1.0):
if npimg is None:
raise Exception('The image is not valid. Please check your image exists.')
if resize_to_default: #1.08155608177
upsample_size = [int(self.target_size[1] / 8 * upsample_size), int(self.target_size[0] / 8 * upsample_size)]
else:
upsample_size = [int(npimg.shape[0] / 8 * upsample_size), int(npimg.shape[1] / 8 * upsample_size)]
if self.tensor_image.dtype == tf.quint8:
# quantize input image
npimg = TfPoseEstimator._quantize_img(npimg)
pass
logger.debug('inference+ original shape=%dx%d' % (npimg.shape[1], npimg.shape[0]))
img = npimg
if resize_to_default:
img = self._get_scaled_img(npimg, None)[0][0]
peaks, heatMat_up, pafMat_up = self.persistent_sess.run(
[self.tensor_peaks, self.tensor_heatMat_up, self.tensor_pafMat_up], feed_dict={
self.tensor_image: [img], self.upsample_size: upsample_size
})
peaks = peaks[0]
self.heatMat = heatMat_up[0]
self.pafMat = pafMat_up[0]
logger.debug('inference- heatMat=%dx%d pafMat=%dx%d' % (
self.heatMat.shape[1], self.heatMat.shape[0], self.pafMat.shape[1], self.pafMat.shape[0]))
t = time.time()
humans = PoseEstimator.estimate_paf(peaks, self.heatMat, self.pafMat)
logger.debug('estimate time=%.5f' % (time.time() - t))
return humans
if __name__ == '__main__':
import pickle
f = open('./etcs/heatpaf1.pkl', 'rb')
data = pickle.load(f)
logger.info('size={}'.format(data['heatMat'].shape))
f.close()
t = time.time()
humans = PoseEstimator.estimate_paf(data['peaks'], data['heatMat'], data['pafMat'])
dt = time.time() - t;
t = time.time()
logger.info('elapsed #humans=%d time=%.8f' % (len(humans), dt))