-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathdemo_TF_MIST.py
151 lines (116 loc) · 4.69 KB
/
demo_TF_MIST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# 下载MNIST数据并解压
import os
current_path = os.path.dirname(__file__)
from six.moves import urllib
import zipfile
DATA_URL = 'http://mantchs.com/data/MNIST.zip'
DATA_DIR = os.path.join(current_path, 'dataset')
FILE = 'MNIST.zip'
if not os.path.exists(DATA_DIR):
os.mkdir(DATA_DIR)
global n
n = 0
def reporthook(blocks_read,block_size,total_size):
global n
if not blocks_read:
print("Connection opened")
if blocks_read*block_size/1024.0 > n:
n += 1000
print("downloading MNIST: %d KB, totalsize: %d KB" % (blocks_read*block_size/1024.0,total_size/1024.0))
# 下载MNIST数据并解压
filepath, _ = urllib.request.urlretrieve(DATA_URL, os.path.join(DATA_DIR, FILE), reporthook)
with zipfile.ZipFile(os.path.join(DATA_DIR, FILE), 'r') as zip:
zip.extractall(DATA_DIR)
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets(DATA_DIR, one_hot=True)
mnist_train_num = mnist.train.images.shape[0]
import tensorflow as tf
from model_log.modellog import ModelLog
import numpy as np
# Parameters
learning_rate = 0.001
epochs = 500
batch_size = 1000
early_stop = 10
display_step = 1
# Network Parameters
n_hidden_1 = 128 # 1st layer number of neurons
n_hidden_2 = 0 # 2nd layer number of neurons
num_input = 784 # MNIST data input (img shape: 28*28)
num_classes = 10 # MNIST total classes (0-9 digits)
# 初始化 ModelLog
model_log = ModelLog('mantch', 'MNIST手写数字识别')
model_log.add_model_name('nn神经网络')
params = {'learning_rate':learning_rate, 'epochs':epochs, 'batch_size':batch_size, 'n_hidden_1':n_hidden_1,
'n_hidden_2':n_hidden_2, 'num_input':num_input, 'num_classes':num_classes, 'early_stop':early_stop}
model_log.add_param(params, 'tf_params')
# tf Graph input
X = tf.placeholder("float", [None, num_input])
Y = tf.placeholder("float", [None, num_classes])
# Store layers weight & bias
weights = {
'h1': tf.Variable(tf.random_normal([num_input, n_hidden_1])),
'out1': tf.Variable(tf.random_normal([n_hidden_1, num_classes]))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1])),
'out': tf.Variable(tf.random_normal([num_classes]))
}
# Create model
def neural_net(x):
# Hidden fully connected layer with 256 neurons
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
out_layer = tf.matmul(layer_1, weights['out1']) + biases['out']
return out_layer
# Construct model
logits = neural_net(X)
prediction = tf.nn.softmax(logits)
# Define loss and optimizer
loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=Y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)
# Evaluate model
correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()
# Start training
with tf.Session() as sess:
# Run the initializer
sess.run(init)
best_loss = 100000
best_epoch = 0
for epoch in range(1, epochs + 1):
loss = []
for i in range(int(mnist_train_num / batch_size)):
batch_x, batch_y = mnist.train.next_batch(batch_size)
# Run optimization op (backprop)
_, batch_loss = sess.run([train_op, loss_op], feed_dict={X: batch_x, Y: batch_y})
loss.append(batch_loss)
if epoch % display_step == 0 or epoch == 1:
# Calculate batch loss and accuracy
test_loss, acc = sess.run([loss_op, accuracy], feed_dict={X: mnist.test.images,
Y: mnist.test.labels})
loss = np.mean(loss)
print("Epoch " + str(epoch) + ", Minibatch Loss= " + \
"{:.4f}".format(loss) + ", Training Accuracy= " + \
"{:.3f}".format(acc))
# ModelLog 添加评估指标
model_log.add_metric('train_loss', loss, epoch)
model_log.add_metric('test_loss', test_loss, epoch)
model_log.add_metric('test_acc', acc, epoch)
if test_loss < best_loss:
best_loss = test_loss
best_epoch = epoch
# 早停
if epoch - best_epoch > 10:
break
# ModelLog 添加最好参数
model_log.add_best_result('best_loss', best_loss, best_epoch)
model_log.add_best_result('best_step', best_epoch, best_epoch)
print("Optimization Finished!")
# Calculate accuracy for MNIST test images
print("Testing Accuracy:", \
sess.run(accuracy, feed_dict={X: mnist.test.images,
Y: mnist.test.labels}))