forked from r9y9/deepvoice3_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocess.py
59 lines (49 loc) · 1.97 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# coding: utf-8
"""
Preprocess dataset
usage: preprocess.py [options] <name> <in_dir> <out_dir>
options:
--num_workers=<n> Num workers.
--hparams=<parmas> Hyper parameters [default: ].
--preset=<json> Path of preset parameters (json).
-h, --help Show help message.
"""
from docopt import docopt
import os
from multiprocessing import cpu_count
from tqdm import tqdm
import importlib
from hparams import hparams, hparams_debug_string
def preprocess(mod, in_dir, out_root, num_workers):
os.makedirs(out_dir, exist_ok=True)
metadata = mod.build_from_path(in_dir, out_dir, num_workers, tqdm=tqdm)
write_metadata(metadata, out_dir)
def write_metadata(metadata, out_dir):
with open(os.path.join(out_dir, 'train.txt'), 'w', encoding='utf-8') as f:
for m in metadata:
f.write('|'.join([str(x) for x in m]) + '\n')
frames = sum([m[2] for m in metadata])
frame_shift_ms = hparams.hop_size / hparams.sample_rate * 1000
hours = frames * frame_shift_ms / (3600 * 1000)
print('Wrote %d utterances, %d frames (%.2f hours)' % (len(metadata), frames, hours))
print('Max input length: %d' % max(len(m[3]) for m in metadata))
print('Max output length: %d' % max(m[2] for m in metadata))
if __name__ == "__main__":
args = docopt(__doc__)
name = args["<name>"]
in_dir = args["<in_dir>"]
out_dir = args["<out_dir>"]
num_workers = args["--num_workers"]
num_workers = cpu_count() if num_workers is None else int(num_workers)
preset = args["--preset"]
# Load preset if specified
if preset is not None:
with open(preset) as f:
hparams.parse_json(f.read())
# Override hyper parameters
hparams.parse(args["--hparams"])
assert hparams.name == "deepvoice3"
print(hparams_debug_string())
assert name in ["jsut", "ljspeech", "vctk", "nikl_m", "nikl_s", "json_meta"]
mod = importlib.import_module(name)
preprocess(mod, in_dir, out_dir, num_workers)