-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplots_for_2020_02_03_data_meeting.m
297 lines (261 loc) · 14.9 KB
/
plots_for_2020_02_03_data_meeting.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
do_force_computation = false ;
do_use_bsub = true ;
do_actually_submit = true ;
bsub_options_template = '-P mouselight -n8 -eo find-somata-%d-%d-%d.stdouterr.txt -oo find-somata-%d-%d-%d.stdouterr.txt -W 59 -J find-somata' ;
%bsub_options = '-P mouselight -n8 -eo /dev/null -oo /dev/null -W 59 -J find-somata' ;
sample_date = '2019-10-04' ;
rendered_folder_path = sprintf('/nrs/mouselight/SAMPLES/%s', sample_date) ;
gfp_channel_index = 0 ;
background_channel_index = 1 ;
zoom_level = 4 ; % The zoom level of the tiles we will analyze
pad_depth_in_um = 50 ; % um
% intensity_threshold = 40000 ;
% minimum_volume = 500 ; % um^3
% maximum_volume = 15000 ; % um^3
% maximum_sqrt_condition_number = 10 ;
intensity_threshold = 0.75 * 2^16 ;
minimum_volume = 500 ; % um^3
%maximum_volume = 15000 ; % um^3
maximum_volume = 25000 ; % um^3
%maximum_sqrt_condition_number = 10 ;
maximum_sqrt_condition_number = 20 ;
parameters = struct('intensity_threshold', {intensity_threshold}, ...
'minimum_volume', {minimum_volume}, ...
'maximum_volume', {maximum_volume}, ...
'maximum_sqrt_condition_number', maximum_sqrt_condition_number) ;
this_file_path = mfilename('fullpath') ;
this_folder_path = fileparts(this_file_path) ;
somata_folder_path = fullfile(this_folder_path, 'auto-somata') ;
%[shape_xyz, origin_xyz, spacing_xyz] = load_sample_shape_origin_and_spacing(rendered_folder_path) ;
render_parameters_file_path = fullfile(rendered_folder_path, 'calculated_parameters.jl') ;
render_parameters = read_renderer_calculated_parameters_file(render_parameters_file_path) ;
max_zoom_level = render_parameters.level_step_count ;
chunk_shape_ijk = render_parameters.leaf_shape ; % xyz order, same at all zoom levels, just the chunk count changes
spacing_at_max_zoom_xyz = render_parameters.spacing ;
origin_at_max_zoom_xyz = render_parameters.origin ;
%shape_xyz = 2^max_zoom_level * chunk_shape_ijk ;
spacing_at_zoom_level_0_xyz = 2^max_zoom_level * spacing_at_max_zoom_xyz ;
spacing_at_zoom_level_xyz = spacing_at_zoom_level_0_xyz ./ (2^zoom_level) ;
heckbert_origin_xyz = origin_at_max_zoom_xyz - spacing_at_max_zoom_xyz/2 ; % this origin does not change with the zoom level
origin_at_zoom_level_xyz = heckbert_origin_xyz + spacing_at_zoom_level_xyz/2 ;
stack_shape_ijk = chunk_shape_ijk * 2^zoom_level ; % the shape of the full-brain stack, at zoom level zoom_level
stack_shape_xyz = stack_shape_ijk .* spacing_at_zoom_level_xyz %#ok<NOPTS>
% the shape of the full-brain stack in um, does not change with zoom level
analysis_chunk_shape_ijk = 4*chunk_shape_ijk ;
chunks_per_dimension_ijk = stack_shape_ijk ./ analysis_chunk_shape_ijk ;
if ~exist(somata_folder_path, 'file') ,
mkdir(somata_folder_path) ;
end
if do_force_computation ,
system(sprintf('rm -rf %s/*', somata_folder_path)) ;
end
chunks_folder_path = fullfile(somata_folder_path, 'chunks') ;
if ~exist(chunks_folder_path, 'file') ,
mkdir(chunks_folder_path) ;
end
job_count = prod(chunks_per_dimension_ijk) ;
job_id_array = repmat(-1, [1 job_count]) ;
job_index = 1 ;
for chunk_i = 1 : chunks_per_dimension_ijk(1) ,
for chunk_j = 1 : chunks_per_dimension_ijk(2) ,
for chunk_k = 1 : chunks_per_dimension_ijk(3) ,
somata_mat_file_name = sprintf('somata-for-chunk-%d-%d-%d.mat', chunk_i, chunk_j, chunk_k) ;
somata_mat_file_path = fullfile(chunks_folder_path, somata_mat_file_name) ;
chunk_offset_within_chunks_ijk1 = [chunk_i chunk_j chunk_k] %#ok<NOPTS>
chunk_offset_within_stack_ijk1 = (chunk_offset_within_chunks_ijk1-1) .* analysis_chunk_shape_ijk + 1 ;
if ~exist(somata_mat_file_path, 'file') ,
if do_use_bsub ,
bsub_options = sprintf(bsub_options_template, chunk_i, chunk_j, chunk_k, chunk_i, chunk_j, chunk_k) %#ok<NOPTS>
job_id_array(job_index) = ...
bsub(do_actually_submit, ...
bsub_options, ...
@pad_and_find_candidate_somata_then_save, ...
somata_mat_file_path, ...
rendered_folder_path, ...
gfp_channel_index, ...
background_channel_index, ...
zoom_level, ...
origin_at_zoom_level_xyz, ...
spacing_at_zoom_level_xyz, ...
chunk_offset_within_stack_ijk1, ...
analysis_chunk_shape_ijk, ...
pad_depth_in_um, ...
parameters) ;
else
tic_id = tic() ;
pad_and_find_candidate_somata_then_save(somata_mat_file_path, ...
rendered_folder_path, ...
gfp_channel_index, ...
background_channel_index, ...
zoom_level, ...
origin_at_zoom_level_xyz, ...
spacing_at_zoom_level_xyz, ...
chunk_offset_within_stack_ijk1, ...
analysis_chunk_shape_ijk, ...
pad_depth_in_um, ...
parameters) ;
toc(tic_id) ;
end
end
job_index = job_index + 1 ;
end
end
end
% Wait for all those jobs to complete
bwait(job_id_array) ;
%%
% Read in all the .mat files
soma_mat_file_name_template = fullfile(chunks_folder_path, 'somata-for-chunk-*.mat') ;
soma_mat_file_names = simple_dir(soma_mat_file_name_template) ;
somata_file_count = length(soma_mat_file_names) ;
%xyz_from_guess_index = zeros(0,3) ;
%feature_struct_from_guess_index = struct_with_shape_and_fields([0 1], somalike_feature_list()) ;
feature_struct_from_candidate_index = compute_derived_component_features(zeros(0,1)) ;
for i = 1 : somata_file_count ,
somata_mat_file_name = soma_mat_file_names{i} ;
somata_mat_file_path = fullfile(chunks_folder_path, somata_mat_file_name) ;
s = load(somata_mat_file_path) ;
%xyz_from_guess_index = vertcat(xyz_from_guess_index, s.xyz_from_guess_index) ; %#ok<AGROW>
%feature_struct_from_guess_index = vertcat(feature_struct_from_guess_index, s.feature_struct_from_guess_index) ; %#ok<AGROW>
feature_struct_from_candidate_index = vertcat(feature_struct_from_candidate_index, s.feature_struct_from_candidate_index) ; %#ok<AGROW>
end
%guess_count = size(xyz_from_guess_index, 1) ;
candidate_count = length(feature_struct_from_candidate_index) ;
% break out the individual fields
voxel_count_from_candidate_index = [feature_struct_from_candidate_index.voxel_count]' ;
sqrt_condition_number_from_candidate_index = [feature_struct_from_candidate_index.sqrt_condition_number]' ;
max_intensity_from_candidate_index = [feature_struct_from_candidate_index.max_intensity]' ;
max_background_intensity_from_candidate_index = [feature_struct_from_candidate_index.max_background_intensity]' ;
% %%
% % Save as a .swc file, which can hold a forest, it turns out
% forest_name = sprintf('%s-auto-somata', sample_date) ;
% forest_color = [1 0 0] ;
% swc_file_name = horzcat(forest_name, '.swc') ;
% swc_file_path = fullfile(somata_folder_path, swc_file_name) ;
% save_somata_as_single_swc(swc_file_path, xyz_from_guess_index, forest_name, forest_color) ;
% Get a mip of the whole brain, for visualization
overview_zoom_level = 2 ;
stack_shape_at_overview_zoom_level_ijk = chunk_shape_ijk * 2^overview_zoom_level ;
spacing_at_overview_zoom_level_xyz = spacing_at_zoom_level_0_xyz ./ (2^overview_zoom_level) ;
origin_at_overview_zoom_level_xyz = heckbert_origin_xyz + spacing_at_overview_zoom_level_xyz/2 ;
whole_brain_at_overview_zoom_level_yxz = ...
get_mouselight_rendered_substack(rendered_folder_path, gfp_channel_index, [1 1 1], stack_shape_at_overview_zoom_level_ijk, overview_zoom_level) ;
overview_mip_yx = max(whole_brain_at_overview_zoom_level_yxz, [], 3) ;
%overview_mip_yx = whole_brain_at_overview_zoom_level_yxz(:,:,round((end+1)/2)) ;
mip_origin_xy = origin_at_overview_zoom_level_xyz(1:2) ;
mip_spacing_xy = spacing_at_overview_zoom_level_xyz(1:2) ;
% Load the ground-truth (these are all soma locations)
[xyz_from_target_index, name_from_target_index] = load_traceable_soma_targets_from_tracers() ;
% % Patch for bad G-040 soma
% if norm(xyz_from_target_index(40,:)-[ 68289.340023 18112.354727 36828.363892 ]) < 1e-6 ,
% xyz_from_target_index(40,:) = [69232.8, 18467.3, 36351.0] ;
% end
target_count = size(xyz_from_target_index, 1) ;
% Compute the guesses
volume_per_voxel = prod(spacing_at_zoom_level_xyz) ;
minimum_volume_in_voxels = minimum_volume / volume_per_voxel %#ok<NOPTS>
maximum_volume_in_voxels = maximum_volume / volume_per_voxel %#ok<NOPTS>
is_guess_from_candidate_index = ...
(minimum_volume_in_voxels < voxel_count_from_candidate_index) & ...
(voxel_count_from_candidate_index < maximum_volume_in_voxels) & ...
sqrt_condition_number_from_candidate_index < maximum_sqrt_condition_number & ...
max_intensity_from_candidate_index > max_background_intensity_from_candidate_index ;
feature_struct_from_guess_index = feature_struct_from_candidate_index(is_guess_from_candidate_index) ;
guess_count = length(feature_struct_from_guess_index) ;
% Report the perf of the guesses
do_plot_candidates = true ;
mip_clim = [11000 2^16-1] ;
% matching_guess_index_from_target_index = ...
% print_performace_statistics_and_plot('guesses', ...
% xyz_from_target_index, ...
% feature_struct_from_guess_index, ...
% heckbert_origin_xyz, ...
% stack_shape_xyz, ...
% spacing_at_zoom_level_xyz, ...
% overview_mip_yx, ...
% mip_origin_xy, ...
% mip_spacing_xy, ...
% mip_clim, ...
% do_plot_candidates) ;
% Figure out what targets are in what guesss
%target_count = size(xyz_from_target_index, 1) ;
%guess_count = length(feature_struct_from_guess_index) ;
origin_at_zoom_level_xyz = heckbert_origin_xyz + spacing_at_zoom_level_xyz/2 ;
matching_guess_index_from_target_index = ...
match_targets_and_components(xyz_from_target_index, feature_struct_from_guess_index, origin_at_zoom_level_xyz, spacing_at_zoom_level_xyz) ;
matching_target_index_from_guess_index = invert_partial_map_array(matching_guess_index_from_target_index, guess_count) ;
is_there_a_matched_guess_from_target_index = isfinite(matching_guess_index_from_target_index) ;
is_there_a_matched_target_from_guess_index = isfinite(matching_target_index_from_guess_index) ;
% Compute hit counts, precision, recall for the guesss
fprintf('\n\n%s:\n', 'guesses') ;
target_count %#ok<NOPTS>
guess_count %#ok<NOPTS>
hit_count = sum(is_there_a_matched_guess_from_target_index) %#ok<NOPTS>
assert( sum(is_there_a_matched_target_from_guess_index) == hit_count ) ;
miss_count = sum(~is_there_a_matched_guess_from_target_index) %#ok<NOPTS>
chase_count = sum(~is_there_a_matched_target_from_guess_index) %#ok<NOPTS>
recall = hit_count / target_count %#ok<NOPTS>
precision = hit_count / guess_count %#ok<NOPTS>
% Plot the MIP image by itself
f = figure('color', 'w', 'name', 'overview') ;
a = axes(f, 'YDir', 'reverse') ;
if true ,
mip_shape_ji = size(overview_mip_yx) ;
mip_shape_ij = mip_shape_ji([2 1]) ;
mip_far_corner_xy = mip_origin_xy + mip_spacing_xy .* (mip_shape_ij-1) ;
image(a, 'CData', overview_mip_yx, ...
'XData', [mip_origin_xy(1) mip_far_corner_xy(1)], ...
'YData', [mip_origin_xy(2) mip_far_corner_xy(2)], ...
'CDataMapping', 'scaled') ;
xlim([mip_origin_xy(1) mip_far_corner_xy(1)] + mip_spacing_xy(1)/2*[-1 +1]) ;
ylim([mip_origin_xy(2) mip_far_corner_xy(2)] + mip_spacing_xy(2)/2*[-1 +1]) ;
a.CLim = mip_clim ;
end
colormap(gray(256)) ;
axis image
xlabel('x (um)') ;
ylabel('y (um)') ;
% Plot the MIP image
f = figure('color', 'w', 'name', 'overview-targets-and-guesses') ;
a = axes(f, 'YDir', 'reverse') ;
if true ,
mip_shape_ji = size(overview_mip_yx) ;
mip_shape_ij = mip_shape_ji([2 1]) ;
mip_far_corner_xy = mip_origin_xy + mip_spacing_xy .* (mip_shape_ij-1) ;
image(a, 'CData', overview_mip_yx, ...
'XData', [mip_origin_xy(1) mip_far_corner_xy(1)], ...
'YData', [mip_origin_xy(2) mip_far_corner_xy(2)], ...
'CDataMapping', 'scaled') ;
xlim([mip_origin_xy(1) mip_far_corner_xy(1)] + mip_spacing_xy(1)/2*[-1 +1]) ;
ylim([mip_origin_xy(2) mip_far_corner_xy(2)] + mip_spacing_xy(2)/2*[-1 +1]) ;
a.CLim = mip_clim ;
end
colormap(gray(256)) ;
axis image
xlabel('x (um)') ;
ylabel('y (um)') ;
% plot each target, and each guess, and draw a line between matches
hold on ;
for target_index = 1 : target_count ,
target_xyz = xyz_from_target_index(target_index,:) ;
marker_color = fif(is_there_a_matched_guess_from_target_index(target_index), [0 0.5 1], [1 0 0]) ;
plot(target_xyz(1), target_xyz(2), 'Marker', '+', 'Color', marker_color) ;
%text(target_xyz(1)+5, target_xyz(2)+5, sprintf('t%d', target_index), 'Color', 0.5*[1 1 1]) ;
end
if true ,
for guess_index = 1 : guess_count ,
guess_xyz = feature_struct_from_guess_index(guess_index).centroidoid_xyz ;
marker_color = fif(is_there_a_matched_target_from_guess_index(guess_index), [0 0.5 1], [1 0 0]) ;
plot(guess_xyz(1), guess_xyz(2), 'Marker', 'o', 'MarkerSize', 6, 'Color', marker_color) ;
%text(guess_xyz(1)-5, guess_xyz(2)-5, sprintf('g%d', guess_index), 'Color', 0.5*[1 1 1]) ;
end
for target_index = 1 : target_count ,
target_xyz = xyz_from_target_index(target_index,:) ;
if is_there_a_matched_guess_from_target_index(target_index) ,
guess_index = matching_guess_index_from_target_index(target_index) ;
guess_xyz = feature_struct_from_guess_index(guess_index).centroidoid_xyz ;
plot([target_xyz(1) guess_xyz(1)], [target_xyz(2) guess_xyz(2)], 'Color', [0 0.5 1]) ;
end
end
end
hold off ;