forked from OpenGVLab/InternVL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
408 lines (357 loc) · 15.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
# --------------------------------------------------------
# InternVL
# Copyright (c) 2022 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import math
import os
from collections import OrderedDict
import numpy as np
import torch
import torch.distributed as dist
from timm.utils import get_state_dict
try:
# noinspection PyUnresolvedReferences
from apex import amp
except ImportError:
amp = None
def load_ema_checkpoint(config, model_ema, logger):
logger.info(
f'==============> Resuming form {config.MODEL.RESUME}....................'
)
if config.MODEL.RESUME.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(config.MODEL.RESUME,
map_location='cpu',
check_hash=True)
else:
checkpoint = torch.load(config.MODEL.RESUME, map_location='cpu')
assert isinstance(checkpoint, dict)
if 'model_ema' in checkpoint:
new_state_dict = OrderedDict()
for k, v in checkpoint['model_ema'].items():
if model_ema.ema_has_module:
name = 'module.' + k if not k.startswith('module') else k
else:
name = k
new_state_dict[name] = v
msg = model_ema.ema.load_state_dict(new_state_dict, strict=False)
logger.info(msg)
logger.info('Loaded state_dict_ema')
else:
logger.warning(
'Failed to find state_dict_ema, starting from loaded model weights'
)
max_accuracy_ema = 0
if 'max_accuracy_ema' in checkpoint:
max_accuracy_ema = checkpoint['max_accuracy_ema']
if 'ema_decay' in checkpoint:
model_ema.decay = checkpoint['ema_decay']
return max_accuracy_ema
def load_checkpoint(config, model, optimizer, lr_scheduler, scaler, logger):
logger.info(
f'==============> Resuming form {config.MODEL.RESUME}....................'
)
if config.MODEL.RESUME.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(config.MODEL.RESUME,
map_location='cpu',
check_hash=True)
else:
checkpoint = torch.load(config.MODEL.RESUME, map_location='cpu')
print('resuming model')
model_checkpoint = checkpoint['model']
msg = model.load_state_dict(model_checkpoint, strict=False)
logger.info(msg)
max_accuracy = 0.0
if not config.EVAL_MODE and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
if optimizer is not None:
print('resuming optimizer')
try:
optimizer.load_state_dict(checkpoint['optimizer'])
except:
print('resume optimizer failed')
if lr_scheduler is not None:
print('resuming lr_scheduler')
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
config.defrost()
config.TRAIN.START_EPOCH = checkpoint['epoch'] + 1
config.freeze()
if 'amp' in checkpoint and config.AMP_OPT_LEVEL != 'O0' and checkpoint['config'].AMP_OPT_LEVEL != 'O0':
scaler.load_state_dict(checkpoint['amp'])
logger.info(
f"=> loaded successfully {config.MODEL.RESUME} (epoch {checkpoint['epoch']})"
)
if 'max_accuracy' in checkpoint:
max_accuracy = checkpoint['max_accuracy']
del checkpoint
torch.cuda.empty_cache()
return max_accuracy
def load_pretrained(config, model, logger):
logger.info(
f'==============> Loading weight {config.MODEL.PRETRAINED} for fine-tuning......'
)
checkpoint = torch.load(config.MODEL.PRETRAINED, map_location='cpu')
state_dict = checkpoint
if 'model' in checkpoint:
state_dict = checkpoint['model']
elif 'module' in checkpoint:
state_dict = checkpoint['module']
first_key = list(state_dict.keys())[0]
# delete teacher weights
if 'student' in first_key or 'teacher' in first_key:
new_state_dict = OrderedDict()
for k, v in state_dict.items():
if 'student_proj' in k:
continue
if 'student' in k:
new_k = k.replace('student.', '')
new_state_dict[new_k] = v
state_dict = new_state_dict
# weights from sim
if 'mask_token' in first_key:
new_state_dict = OrderedDict()
for k, v in state_dict.items():
if 'mm_dcnv3' in k:
continue
if 'dcnv3' not in k and 'clip_projector' not in k:
continue
new_k = k.replace('dcnv3.', '')
new_state_dict[new_k] = v
new_state_dict['fc_norm.weight'] = state_dict[
'clip.classifier_ln.weight']
new_state_dict['fc_norm.bias'] = state_dict['clip.classifier_ln.bias']
new_state_dict['head.weight'] = state_dict['clip.classifier.weight']
new_state_dict['head.bias'] = state_dict['clip.classifier.bias']
state_dict = new_state_dict
# delete relative_position_index since we always re-init it
relative_position_index_keys = [
k for k in state_dict.keys() if 'relative_position_index' in k
]
for k in relative_position_index_keys:
del state_dict[k]
# delete relative_coords_table since we always re-init it
relative_position_index_keys = [
k for k in state_dict.keys() if 'relative_coords_table' in k
]
for k in relative_position_index_keys:
del state_dict[k]
# delete attn_mask since we always re-init it
attn_mask_keys = [k for k in state_dict.keys() if 'attn_mask' in k]
for k in attn_mask_keys:
del state_dict[k]
# bicubic interpolate relative_position_bias_table if not match
relative_position_bias_table_keys = [
k for k in state_dict.keys() if 'relative_position_bias_table' in k
]
for k in relative_position_bias_table_keys:
relative_position_bias_table_pretrained = state_dict[k]
relative_position_bias_table_current = model.state_dict()[k]
L1, nH1 = relative_position_bias_table_pretrained.size()
L2, nH2 = relative_position_bias_table_current.size()
if nH1 != nH2:
logger.warning(f'Error in loading {k}, passing......')
else:
if L1 != L2:
# bicubic interpolate relative_position_bias_table if not match
S1 = int(L1 ** 0.5)
S2 = int(L2 ** 0.5)
relative_position_bias_table_pretrained_resized = torch.nn.functional.interpolate(
relative_position_bias_table_pretrained.permute(1, 0).view(1, nH1, S1, S1),
size=(S2, S2),
mode='bicubic')
state_dict[k] = relative_position_bias_table_pretrained_resized.view(nH2, L2).permute(1, 0)
# bicubic interpolate absolute_pos_embed if not match
absolute_pos_embed_keys = [
k for k in state_dict.keys() if 'absolute_pos_embed' in k
]
for k in absolute_pos_embed_keys:
# dpe
absolute_pos_embed_pretrained = state_dict[k]
absolute_pos_embed_current = model.state_dict()[k]
_, L1, C1 = absolute_pos_embed_pretrained.size()
_, L2, C2 = absolute_pos_embed_current.size()
if C1 != C1:
logger.warning(f'Error in loading {k}, passing......')
else:
if L1 != L2:
S1 = int(L1 ** 0.5)
S2 = int(L2 ** 0.5)
absolute_pos_embed_pretrained = absolute_pos_embed_pretrained.reshape(-1, S1, S1, C1)
absolute_pos_embed_pretrained = absolute_pos_embed_pretrained.permute(0, 3, 1, 2)
absolute_pos_embed_pretrained_resized = torch.nn.functional.interpolate(
absolute_pos_embed_pretrained,
size=(S2, S2),
mode='bicubic')
absolute_pos_embed_pretrained_resized = absolute_pos_embed_pretrained_resized.permute(0, 2, 3, 1)
absolute_pos_embed_pretrained_resized = absolute_pos_embed_pretrained_resized.flatten(1, 2)
state_dict[k] = absolute_pos_embed_pretrained_resized
# check classifier, if not match, then re-init classifier to zero
if 'head.bias' in state_dict:
head_bias_pretrained = state_dict['head.bias']
Nc1 = head_bias_pretrained.shape[0]
Nc2 = model.head.bias.shape[0]
if (Nc1 != Nc2):
if config.TRAIN.RAND_INIT_FT_HEAD:
model.head.weight.data = model.head.weight.data * 0.001
model.head.bias.data = model.head.bias.data * 0.001
del state_dict['head.weight']
del state_dict['head.bias']
logger.warning(f'Error in loading classifier head, re-init classifier head to 0')
elif Nc1 == 21841 and Nc2 == 1000:
logger.info('loading ImageNet-22K weight to ImageNet-1K ......')
map22kto1k_path = 'meta_data/map22kto1k.txt'
logger.info(map22kto1k_path)
with open(map22kto1k_path) as f:
map22kto1k = f.readlines()
map22kto1k = [int(id22k.strip()) for id22k in map22kto1k]
state_dict['head.weight'] = state_dict['head.weight'][map22kto1k, :]
state_dict['head.bias'] = state_dict['head.bias'][map22kto1k]
msg = model.load_state_dict(state_dict, strict=False)
logger.warning(msg)
logger.info(f'=> loaded successfully {config.MODEL.PRETRAINED}')
del checkpoint
torch.cuda.empty_cache()
def convert_22k_head_to_1k(model, logger):
head_weight = model.module.head.weight
head_bias = model.module.head.bias
Nc1 = head_bias.shape[0]
if Nc1 == 21841:
logger.info('converting ImageNet-22K head to ImageNet-1K ......')
map22kto1k_path = 'meta_data/map22kto1k.txt'
logger.info(map22kto1k_path)
with open(map22kto1k_path) as f:
map22kto1k = f.readlines()
map22kto1k = [int(id22k.strip()) for id22k in map22kto1k]
model.module.head.weight = torch.nn.Parameter(head_weight[map22kto1k, :])
model.module.head.bias = torch.nn.Parameter(head_bias[map22kto1k])
else:
logger.warning(f'Error in converting classifier head')
return model
def save_checkpoint(config,
epoch,
model,
max_accuracy,
optimizer,
lr_scheduler,
scaler,
logger,
model_ema=None,
max_accuracy_ema=None,
ema_decay=None,
model_ems=None,
max_accuracy_ems=None,
ems_model_num=None,
best=None):
save_state = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'max_accuracy': max_accuracy,
'epoch': epoch,
'config': config
}
if model_ema is not None:
save_state['model_ema'] = get_state_dict(model_ema)
if max_accuracy_ema is not None:
save_state['max_accuracy_ema'] = max_accuracy_ema
if ema_decay is not None:
save_state['ema_decay'] = ema_decay
if model_ems is not None:
save_state['model_ems'] = get_state_dict(model_ems)
if max_accuracy_ems is not None:
save_state['max_accuracy_ems'] = max_accuracy_ems
if ems_model_num is not None:
save_state['ems_model_num'] = ems_model_num
if config.AMP_OPT_LEVEL != 'O0':
# save_state['amp'] = amp.state_dict()
save_state['amp'] = scaler.state_dict()
if best is None:
save_path = os.path.join(config.OUTPUT, f'ckpt_epoch_{epoch}.pth')
else:
save_path = os.path.join(config.OUTPUT, f'ckpt_epoch_{best}.pth')
logger.info(f'{save_path} saving......')
torch.save(save_state, save_path)
logger.info(f'{save_path} saved !!!')
if dist.get_rank() == 0 and isinstance(epoch, int):
to_del = epoch - config.SAVE_CKPT_NUM * config.SAVE_FREQ
old_ckpt = os.path.join(config.OUTPUT, f'ckpt_epoch_{to_del}.pth')
if os.path.exists(old_ckpt):
os.remove(old_ckpt)
def get_grad_norm(parameters, norm_type=2):
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
norm_type = float(norm_type)
total_norm = 0
for p in parameters:
param_norm = p.grad.data.norm(norm_type)
total_norm += param_norm.item() ** norm_type
total_norm = total_norm ** (1. / norm_type)
return total_norm
def auto_resume_helper(output_dir):
checkpoints = os.listdir(output_dir)
checkpoints = [ckpt for ckpt in checkpoints if ckpt.endswith('pth')]
print(f'All checkpoints founded in {output_dir}: {checkpoints}')
if len(checkpoints) > 0:
latest_checkpoint = max(
[os.path.join(output_dir, d) for d in checkpoints],
key=os.path.getmtime)
print(f'The latest checkpoint founded: {latest_checkpoint}')
resume_file = latest_checkpoint
else:
resume_file = None
return resume_file
def reduce_tensor(tensor):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt /= dist.get_world_size()
return rt
# https://github.com/facebookresearch/ConvNeXt/blob/main/utils.py
class NativeScalerWithGradNormCount:
state_dict_key = 'amp_scaler'
def __init__(self):
self._scaler = torch.cuda.amp.GradScaler()
def __call__(self,
loss,
optimizer,
clip_grad=None,
parameters=None,
create_graph=False,
update_grad=True):
self._scaler.scale(loss).backward(create_graph=create_graph)
if update_grad:
if clip_grad is not None:
assert parameters is not None
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
else:
self._scaler.unscale_(optimizer)
norm = get_grad_norm(parameters)
self._scaler.step(optimizer)
self._scaler.update()
else:
norm = None
return norm
def state_dict(self):
return self._scaler.state_dict()
def load_state_dict(self, state_dict):
self._scaler.load_state_dict(state_dict)
class MyAverageMeter(object):
"""Computes and stores the average and current value."""
def __init__(self, max_len=-1):
self.val_list = []
self.count = []
self.max_len = max_len
self.val = 0
self.avg = 0
self.var = 0
def update(self, val):
self.val = val
self.avg = 0
self.var = 0
if not math.isnan(val) and not math.isinf(val):
self.val_list.append(val)
if self.max_len > 0 and len(self.val_list) > self.max_len:
self.val_list = self.val_list[-self.max_len:]
if len(self.val_list) > 0:
self.avg = np.mean(np.array(self.val_list))
self.var = np.std(np.array(self.val_list))