-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_util.py
233 lines (233 loc) · 9.35 KB
/
test_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
import fire
from tqdm import tqdm
import json
from datetime import datetime
import numpy as np
import utils_optim, utils_scoring, utils_rl, utils_timing
from model_reflection import ReflectionScoreDeployedCL
from model_empathy import Empathy
from experiment_util import *
from random_util import set_seed
from nltk import sent_tokenize
def run_test(
model=None,
tokenizer=None,
data=None,
test_batch_size=8,
experiment = "empathy_EX_ER",
scoring="logsum",
output_dir="outputs/test",
seed = 420691488,
):
set_seed(seed)
gen_device = model.device
def batch_collate(inps):
batch_paras = []
batch_labels = []
batch_responses = []
for inp in inps:
text = inp["prompt"] + " [SEP] "
batch_paras.append(text)
batch_responses.append(inp["response"])
return {"prompts": batch_paras,
"responses": batch_responses
}
dataloader = DataLoader(dataset=data, batch_size=test_batch_size,\
sampler=SequentialSampler(data), drop_last=True, collate_fn=batch_collate)
gen_params = {"max_new_tokens": 100, "early_stopping": True, \
"do_sample": True, "num_return_sequences": 1, "temperature": 1.0,
}
scorers = get_scorers(experiment, None, None, False)
scorer = utils_scoring.ScorerWrapper(scorers, scoring_method=scoring, max_batch_size=12)
results = []
outputs = []
for ib, paragraphs in enumerate(tqdm(dataloader, position=0, leave=True, dynamic_ncols=True)):
responses = paragraphs["responses"]
prompts = paragraphs["prompts"]
gen_params = {"max_new_tokens": model.config.max_output_length, "early_stopping": True, \
"do_sample": True, "num_return_sequences": 1, "temperature": 0.5,
}
with torch.cuda.amp.autocast():
gen_input = tokenizer.batch_encode_plus(prompts, max_length=model.config.max_length, \
return_tensors="pt", padding="longest", truncation=True)
gen_input = {k: v.to(gen_device) for k, v in gen_input.items()}
try:
gens_out = model.generate(input_ids=gen_input["input_ids"],\
decoder_start_token_id=tokenizer.bos_token_id,\
attention_mask=gen_input["attention_mask"], **gen_params)
except:
print("Error generating")
continue
generateds = tokenizer.batch_decode(gens_out, skip_special_tokens=True)
"""
special segment begin
"""
cut_generateds = [ [ x.strip() for x in g.split("[CLS]")[:-1]] for g in generateds]
new = []
for c, g in zip(cut_generateds, generateds):
if c == []:
new.append([g])
else:
new.append(c)
generateds = [ " ".join(g) for g in new]
generateds = [ g.replace("<pad>", "").strip() for g in generateds]
generateds = [g.replace("[CLS]", "").strip() for g in generateds]
"""
special segment end
"""
scorer_returns = scorer.rl_score(prompts, generateds, responses=responses)
results.append(scorer_returns)
for p, g, r in zip(prompts, generateds, responses):
outputs.append({"prompt": p, "generated": g, "response": r})
res_dict = {}
for k,v in results[0].items():
res_dict[k] = []
for r in results:
for k,v in r.items():
if k in res_dict:
res_dict[k] += v
else:
res_dict[k] = v
for k,v in res_dict.items():
assert len(v) == len(outputs)
for i,o in enumerate(outputs):
o[k] = v[i]
with open(output_dir + "/generated.json", "w") as f:
json.dump(outputs, f, indent=4)
res = []
for k,v in res_dict.items():
agg = {k: [np.mean(v), np.std(v)]}
res.append(agg)
print(agg)
res.append(res_dict)
with open(output_dir + "/test_results.json", "w") as f:
json.dump(res, f, indent=4)
return
def read_jsonl(path, line_length=9):
with open(path, "r") as f:
lines = f.readlines()
lines = [lines[i:i+line_length] for i in range(0, len(lines), line_length)]
data = []
for l in lines:
line = "".join(l)
data.append(json.loads(line))
return data
def run_only_test(
model_name: str = "t5-base",
model_start_dir: Optional[str] = "moutputs/supervised_MI_2023_09_07_11_07_47/supervised_MI_epochs2/",
test_batch_size: int = 16,
experiment = "MI_rl",
debug: bool = False,
lora: bool = False,
seed: int = 420691488,
):
if experiment == "common_gen":
model_start_dir = "models/supervised_common_gen_epochs1"
model, tokenizer = get_model(model_name, model_start_dir, max_seq_length=90, lora=lora)
gen_device = "cuda:0" if torch.cuda.is_available() else "cpu"
model = model.to(gen_device)
data_split = [0.8, 0.1, 0.1]
train_data, dev_data, test_data = get_data(experiment, data_split, -1, debug )
begin_time = datetime.now().strftime("%Y_%m_%d_%H_%M_%S")
model_type = [ x for x in model_start_dir.split("/") if x != "" and x!="."][1]
output_dir = "./voutputs/test_%s_%s_%s/" % (experiment, model_type, begin_time)
os.makedirs(output_dir, exist_ok=True)
run_test(model=model, tokenizer=tokenizer, data=test_data,\
test_batch_size=test_batch_size, experiment = experiment,\
output_dir=output_dir, seed=seed)
def run_only_naturalness_test(
model_name: str = "t5-base",
model_start_dir: Optional[str] = "models/supervised/model",
test_batch_size: int = 8,
test_generation_path: str = None,
experiment = "empathy_EX_ER",
debug: bool = False,
lora: bool = False,
seed: int = 420691488,
):
if test_generation_path is None:
test_generation_path = model_start_dir + "/generated.jsonl"
if not os.path.exists(test_generation_path):
test_generation_path = model_start_dir + "/generated.json"
if test_generation_path.endswith(".jsonl"):
test_data = read_jsonl(test_generation_path)
else:
with open(test_generation_path, "r") as f:
test_data = json.load(f)
for t in test_data:
t["prompt"] = t["prompt"].replace("[SEP]", "").strip()
begin_time = datetime.now().strftime("%Y_%m_%d_%H_%M_%S")
output_dir = "/".join(test_generation_path.split("/")[:-1]) + "/"
def batch_collate(inps):
batch_paras = []
batch_generateds = []
batch_responses = []
for inp in inps:
text = inp["prompt"] + " [SEP] "
batch_paras.append(text)
batch_responses.append(inp["response"])
batch_generateds.append(inp["generated"])
return {"prompts": batch_paras,
"responses": batch_responses,
"generateds": batch_generateds}
dataloader = DataLoader(dataset=test_data, batch_size=test_batch_size,\
sampler=SequentialSampler(test_data), drop_last=True, collate_fn=batch_collate)
scorers = get_naturalness_scorers(None, None)
scorer = utils_scoring.ScorerWrapper(scorers, scoring_method="logsum", max_batch_size=12)
results = []
outputs = []
for ib, paragraphs in enumerate(tqdm(dataloader, position=0, leave=True, dynamic_ncols=True)):
responses = paragraphs["responses"]
prompts = paragraphs["prompts"]
generateds = paragraphs["generateds"]
scorer_returns = scorer.rl_score(prompts, generateds, responses=responses)
results.append(scorer_returns)
for p, g, r in zip(prompts, generateds, responses):
outputs.append({"prompt": p, "generated": g, "response": r})
res_dict = {}
for k,v in results[0].items():
res_dict[k] = []
for r in results:
for k,v in r.items():
if k in res_dict:
res_dict[k] += v
else:
res_dict[k] = v
for k,v in res_dict.items():
assert len(v) == len(outputs)
for i,o in enumerate(outputs):
o[k] = v[i]
res = []
for k,v in res_dict.items():
agg = {k: [np.mean(v), np.std(v)]}
res.append(agg)
print(agg)
res.append(res_dict)
return
from model_multi import distinct_n_sentence_level
def run_corpus_distinct(
model_start_dir: Optional[str] = "models/supervised/model",
test_generation_path: str = None
):
if test_generation_path is None:
test_generation_path = model_start_dir + "/generated.jsonl"
if not os.path.exists(test_generation_path):
test_generation_path = model_start_dir + "/generated.json"
if test_generation_path.endswith(".jsonl"):
test_data = read_jsonl(test_generation_path)
else:
with open(test_generation_path, "r") as f:
test_data = json.load(f)
for t in test_data:
t["prompt"] = t["prompt"].replace("[SEP]", "").strip()
generateds = [t["generated"] for t in test_data]
joined_generateds = " ".join(generateds)
dis1 = distinct_n_sentence_level(joined_generateds.split(), 1)
dis2 = distinct_n_sentence_level(joined_generateds.split(), 2)
print("distinct-1: ", dis1)
print("distinct-2: ", dis2)
return
if __name__ == "__main__":
fire.Fire(run_only_test)