-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.rs
156 lines (153 loc) · 8.46 KB
/
plot.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#![feature(trait_alias,destructuring_assignment,default_free_fn,let_else,iter_zip,unboxed_closures,fn_traits,box_patterns)]
#![allow(non_snake_case,non_upper_case_globals)]
mod yaml; mod device;
use {std::iter::zip, anyhow::Result, iter::map, itertools::Itertools, combustion::*, device::*};
fn main() -> Result<()> {
let path = std::env::args().skip(1).next().unwrap_or("LiDryer".to_string());
let path = if std::path::Path::new(&path).exists() { path } else { format!("/usr/local/share/cantera/data/{path}.yaml") };
let model = yaml::Loader::load_from_str(std::str::from_utf8(&std::fs::read(&path).expect(&path))?)?;
let model = yaml::parse(&model);
let (species_names, ref species, active, reactions, ref _state) = new(&model);
let rates = reaction::rates(&species.molar_mass, &species.thermodynamics, &reactions, &species_names);
let block_size = 1;
let rates = assemble(rates, block_size);
let ref state@State{pressure_R, volume, temperature, ref amounts} = {
let State{pressure_R, ..} = initial_state(&model);
let equivalence_ratio = 1.;
//let amounts = std::collections::HashMap::<_, _>::from_iter([("H2", equivalence_ratio),("O2", 1./2.),("N2",79./21./2.)]);
let amounts = std::collections::HashMap::<_, _>::from_iter([("CH4", equivalence_ratio),("O2", 2.),("N2",79./21.)]);
let amounts = map(&*species_names, |s| *amounts.get(s).unwrap_or(&0.));
State{pressure_R, volume: 1., temperature: 1100., amounts}
};
//let amounts = &state.amounts;
#[derive(serde::Serialize)] struct StandardState { pressure: f64, temperature: f64, X: Box<[f64]> }
impl From<&State> for StandardState {
fn from(State{pressure_R, temperature, amounts, ..}: &State) -> Self {
Self{pressure: pressure_R*R, temperature: *temperature, X: amounts.clone()}
}
}
if true { println!("{}", serde_yaml::to_string(&StandardState::from(state))?); }
assert!(active < amounts.len()); // Assume bulk specie is inert
let state : Box<[f32]> = map([&[temperature, volume], &amounts[..active]].concat(), |v| v as _);
let input = [&*state, &*map(&amounts[active..amounts.len()-1], |&v| v as _)].concat();
let states_len = 1;
let input = map(input.into_iter(), |x| vec![x as _; states_len]);
//let mut evaluations = 0;
#[cfg(not(feature="vpu"))] let mut f = {
let mut input = input;
move |u: &[f32], f_u: &mut [f32]| {
assert!(u[0]>200.);
assert!(u.iter().all(|u| u.is_finite()));
for (input, &u) in zip(input[..2+active].iter_mut(), u) { input[0] = u; } // T, V, active, non bulk inert (non bulk inerts are input parameters but not reaction state)
f_u.copy_from_slice(&map(&*rates(&[pressure_R as _, (1./pressure_R) as _], &map(&*input, |x| &**x)).unwrap(), |y| all_same(y, states_len)));
assert!(f_u.iter().all(|u| u.is_finite()), "{u:?} {f_u:?}");
//evaluations += 1;
true
}
};
#[cfg(feature="vpu")] use {iter::list, vulkan::*};
#[cfg(feature="vpu")] let Function{ref device, output_len, block_size, pipeline,..} = rates;
#[cfg(feature="vpu")] let mut input = map(&*input, |array| Buffer::new(device, array).unwrap());
#[cfg(feature="vpu")] let output = map(0..output_len, |_| Buffer::new(device, &vec![0.; states_len]).unwrap());
#[cfg(feature="vpu")] let mut f = {
let buffers = list(input.iter().chain(&*output));
device.bind(pipeline.descriptor_set, &buffers)?;
let mut input = map(input.iter_mut(), |array| array.map_mut(device).unwrap());
let output = map(&*output, |array| array.map(device).unwrap());
let constants : [f32; 2] = [pressure_R as _, (1./pressure_R) as _];
let command_buffer = device.command_buffer(&pipeline, as_u8(&constants), (states_len as u32)/(block_size as u32))?;
move |u: &[f32], f_u: &mut [f32]| {
//println!("{:3} {:.2e}", "u", u.iter().format(", "));
assert!(u[0]>200. && u[0] < 3000., "{u:?}");
assert!(u.iter().all(|u| u.is_finite()));
//input[..2+active].copy_from_slice(u); // T, V, active, non bulk inert (non bulk inerts are input parameters but not reaction state)
//f_u.copy_from_slice(&rates(&[pressure_R as _, (1./pressure_R) as _], &input).unwrap());
for (input, &u) in zip(input[..2+active].iter_mut(), u) { input[0] = u; } // T, V, active, non bulk inert (non bulk inerts are input parameters but not reaction state)
//println!("{u:?} {f_u:?}");
device.submit_and_wait(command_buffer).unwrap(); // constant constants
for (output, f_u) in zip(&*output, f_u.iter_mut()) { *f_u = output[0]; }
assert!(f_u.iter().all(|u| u.is_finite()), "{u:?} {f_u:?}");
//assert!(num::abs(f_u[0]) < 1., "{u:?} {f_u:?}");
//evaluations += 1;
//println!("{:3} {:.2e}", "f_u", f_u.iter().format(", "));
true
}
};
//let mut integrator = cvode::CVODE::new(/*relative_tolerance:*/ 1e-4, /*absolute_tolerance:*/ 1e-7, &state)
let mut integrator = {
struct Explicit<F: FnMut(&[f32], &mut [f32])->bool> { f_u: Box<[f32]>, _marker: std::marker::PhantomData<F> }
impl<F: FnMut(&[f32], &mut [f32])->bool> Explicit<F> {
pub fn step(&mut self, f: &mut F, dt: f32, u: &mut [f32]) -> f32 {
f(&map(&*u,|&u| u as _), &mut self.f_u);
for (u, &f_u) in zip(u.iter_mut(), &*self.f_u) { *u += dt*f_u as f32; }
dt
}
}
Explicit{f_u: vec![0.; state.len()].into(), _marker: std::marker::PhantomData}
};
let plot_min_time = 0.;
let (mut time, mut state) = (0., state);
//let start = std::time::Instant::now();
println!("{plot_min_time}");
while time < plot_min_time {
time += integrator.step(&mut f, model.time_step as f32, &mut state) as f64;
//dbg!(time/plot_min_time, time, state[0]);
//assert!(state[0]<1500.);
}
//eprintln!("T {}", state[0]);
eprintln!("T {}", state[0]);
//let mut min:f32 = 0.;
let duration = 0.3;
//let steps = duration/model.time_step;
let points = 3840;
let point_duration = duration/(points as f64);
//let points_steps = ((points as f64)/steps).ceil();
//assert!(points_steps == 1);
let points = map(0..points, |_| {
let [temperature, volume, active_amounts@..] = &state[..] else { unreachable!() };
let point = ((time-plot_min_time)*1e3, vec![vec![*temperature as f64, (*volume*1e3) as f64].into_boxed_slice(), map(active_amounts, |&v| (v as f32/active_amounts.iter().sum::<f32>()) as f64)].into_boxed_slice());
let point_end_time = time+point_duration;
while time < point_end_time {
time += integrator.step(&mut f, model.time_step as f32, &mut state) as f64;
}
//min = min.min(state[1..].iter().copied().reduce(f32::min).unwrap());
point
});
//let end = std::time::Instant::now();
//let time = (end-start).as_secs_f64();
//println!("T {}", state[0]);
//println!("{evaluations} / {time}s = {}", (evaluations as f64)/time);
//println!("{:.0e}", min);
if true {
let OH = species_names.iter().position(|&name| name=="OH").unwrap();
let max_OH = points.iter().map(|point|{
let (_, box [ box [_, _], ref active_amounts]) = point else { unreachable!() };
ordered_float::OrderedFloat(active_amounts[OH])
}).position_max().unwrap();
println!("{max_OH} {}", (max_OH as f64)*model.time_step);
let from = /*amounts*/|point: &(_, Box<[Box<[f64]>]>)| -> State {
let (_, box [ box [temperature, volume], ref active_amounts]) = point else { unreachable!() };
let amounts = [&active_amounts, &amounts[active..]].concat().into_boxed_slice(); // Inerts stays during reaction
State{pressure_R, volume: *volume, temperature: *temperature, amounts}
};
println!("{}", serde_yaml::to_string(&StandardState::from(&from(&points[max_OH])))?);
println!("{}", serde_yaml::to_string(&StandardState::from(&from(points.last().unwrap())))?);
}
let key = map((0..active).map(|k| points.iter().map(move |(_, sets)| sets[1][k])), |Y| Y.reduce(f64::max).unwrap());
let mut s = map(0..active, |i| i);
let (_, _, select) = s.select_nth_unstable_by(species.len()-5, |&a,&b| key[a].partial_cmp(&key[b]).unwrap());
let species_names = map(&*select, |&k| species_names[k]);
let points = map(Vec::from(points).into_iter(), |(t, sets)| {
let [sets_0, sets_1] = *std::convert::TryInto::<Box<[_;2]>>::try_into(sets).unwrap();
(t as f64, vec![sets_0, map(&*select, |&k| sets_1[k])].into_boxed_slice())
});
let keys = vec![&["T","V"] as &[_], &species_names];
let mut plot = ui::plot::Plot::new(&keys, &points);
if false { Ok(ui::app::run(plot)?) }
else {
let mut target = image::Image::zero((3840, 2160).into());
ui::widget::Widget::paint(&mut plot, &mut target.as_mut())?;
pub fn as_bytes<T>(slice: &[T]) -> &[u8] { unsafe{std::slice::from_raw_parts(slice.as_ptr() as *const u8, slice.len() * std::mem::size_of::<T>())} }
Ok(png::save_buffer("/var/tmp/image.png", as_bytes(&target.data), target.size.x, target.size.y, png::ColorType::Rgba8)?)
}
}