forked from ReaLLMASIC/nanoGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample.py
356 lines (302 loc) · 18 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import argparse
import json
import os
import pickle
import time
from contextlib import nullcontext
from datetime import datetime
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import torch
import tiktoken
from rich import print
from torch.nn import functional as F
from collections import OrderedDict
from model import GPT, GPTConfig
from model_info_util.model_info import print_summary, print_module_structure, print_model_blocks
from variations.model_variations import model_variation_dictionary
def parse_args():
parser = argparse.ArgumentParser(description="Inference from trained models")
parser.add_argument("--device", type=str, default="cuda", help="Device to run inference (e.g., 'cpu', 'cuda', 'cuda:0', 'cuda:1')")
parser.add_argument("--out_dir", type=str, default="out", help="Directory to load checkpoint from")
parser.add_argument("--quantization_data_file", type=str, default=None, help="File name to export the quantized weights/activations, scale factor, and zero point")
parser.add_argument("--init_from", type=str, default="resume", help="Either 'resume' (from an out_dir) or a GPT-2 variant (e.g., 'gpt2-xl')")
parser.add_argument("--start", type=str, default="\n", help="Start text for generation. Can specify a file using 'FILE:prompt.txt'")
parser.add_argument("--num_samples", type=int, default=3, help="Number of inference streams to draw")
parser.add_argument("--max_new_tokens", type=int, default=500, help="Number of tokens to generate in each sample")
parser.add_argument("--temperature", type=float, default=0.8, help="Temperature for predictions (1.0 = no change, < 1.0 = less random, > 1.0 = more random)")
parser.add_argument("--top_k", type=int, default=200, help="Retain only the top_k most likely tokens")
parser.add_argument("--seed", type=int, default=1337, help="Seed for pseudorandom number generator")
parser.add_argument("--dtype", type=str, default="bfloat16", choices=["bfloat16", "float16", "float32"], help="Torch data type for inference")
parser.add_argument('--compile', action=argparse.BooleanOptionalAction, help="Compile the model (requires PyTorch 2.0)")
parser.add_argument('--sample_file', type=str, default=None, help="Output file for inference")
parser.add_argument('--interactive', action=argparse.BooleanOptionalAction, help="Enable interactive generation")
parser.add_argument('--stop_string', type=str, default='~W', help="String to stop generation and allow user input")
parser.add_argument('--show_heatmaps', action=argparse.BooleanOptionalAction, help="Show heatmaps of top-k choices for each token")
parser.add_argument('--last_k_tokens', type=int, default=10, help="Number of last tokens to display in heatmaps")
parser.add_argument('--chart_type', type=str, default='heatmap', choices=['heatmap', 'barchart'], help="Type of chart to display: 'heatmap' or 'barchart'")
parser.add_argument('--block_size', type=int, default=None, help="Block size for context length, default is model's block size")
parser.add_argument('--sym_rot_num_angles', type=int, default=None, help="Number of angles for symmetrical rotary embedding")
parser.add_argument('--rope_length', type=int, default=None, help="Number of embeddings to rotate (must be an even number <= total embedding size)")
parser.add_argument('--token_boundary', type=str, default=None, help="optional separator between emitted tokens")
parser.add_argument('--print_model_info', default=True, action=argparse.BooleanOptionalAction, help="print info about model before infernece")
# Steering Vector Related
parser.add_argument('--save_avg_vector', type=str, default=None, help="Path to save the average vector of the start text to an .npy file")
parser.add_argument('--apply_vector_file1', type=str, default=None, help="First .npy file to load the vector for subtraction")
parser.add_argument('--apply_vector_file2', type=str, default=None, help="Second .npy file to load the vector for subtraction")
parser.add_argument('--steering_vector_scaling_factor', type=float, default=1.0, help="Scaling factor to apply after subtracting vectors")
parser.add_argument('--apply_to_layer_idx', type=int, default=None, help="Layer index at which to apply the resulting vector")
# Leanred Steering Vector Related
parser.add_argument('--use_lsv', default=False, action=argparse.BooleanOptionalAction)
parser.add_argument('--lsv_size', type=int, default=1, help="Number of vectors to test")
parser.add_argument('--lsv_scaling_factor', type=float, default=None, help="scaling factor")
parser.add_argument('--lsv_mixture', type=float, nargs='+', default=None, help="scaling factor mixture")
parser.add_argument("--eval_only", action=argparse.BooleanOptionalAction, help="Enable evaluation only mode to calculate and print validation loss")
parser.add_argument("--eval_iters", type=int, default=250, help="iterations for evaluation")
parser.add_argument("--eval_dataset", type=str, default=None, help="dataset for evaluation")
return parser.parse_args()
def save_chart(probs, idx, decode, step, out_dir, last_k_tokens, chart_type, selected_token):
top_k_probs, top_k_indices = torch.topk(probs, k=probs.size(-1))
top_k_tokens = [decode([top_k_indices[0, i].item()]) for i in range(top_k_indices.size(1))]
plt.figure(figsize=(10, 6))
if chart_type == 'heatmap':
sns.heatmap(top_k_probs.cpu().numpy().reshape(1, -1), annot=np.array(top_k_tokens).reshape(1, -1), fmt='', cmap='viridis')
elif chart_type == 'barchart':
colors = sns.color_palette('viridis', len(top_k_tokens))
bars = plt.bar(top_k_tokens, top_k_probs.cpu().numpy().flatten(), color=colors)
plt.xticks(rotation=90)
for bar, token in zip(bars, top_k_tokens):
if token == selected_token:
bar.set_edgecolor('red')
bar.set_linewidth(2)
plt.title(f"Step {step}: Top-k Token Probabilities")
last_tokens = decode(idx[0, -last_k_tokens:].tolist())
plt.xlabel(f"Last {last_k_tokens} Tokens: {last_tokens}")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
out_path = os.path.join(out_dir, f"{timestamp}_step{step}.png")
os.makedirs(out_dir, exist_ok=True)
plt.savefig(out_path)
plt.close()
def interactive_generation(model, start_ids, device, max_new_tokens, temperature, top_k, stop_string, decode, encode):
x = torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...]
while True:
x, generated_text = model.generate_with_stop(x, max_new_tokens, stop_string, decode, temperature, top_k)
print("[bold green]" + generated_text)
user_input = input("User input (or 'exit' to quit): ")
if user_input.lower() == 'exit':
break
# Append the user input directly after the stop string
x = torch.cat((x, torch.tensor(encode(user_input), dtype=torch.long, device=device)[None, ...]), dim=1)
def save_args(args, out_dir):
with open(os.path.join(out_dir, 'args.json'), 'w') as f:
json.dump(vars(args), f, indent=4)
#TODO: Rename to reflect general purpose
def save_quantized_data(state_dict, out_file):
to_save = OrderedDict()
for k, v in list(state_dict.items()):
# if "mlp_act" in k or "attn_act" in k or k.endswith("quantized_bias") or k.endswith("bias_norm") or k.endswith("zero_point") or k.endswith("quantized_weight") or k.endswith("weight_norm"):
to_save[k] = v.cpu().numpy()
with open(f"{out_file}.pkl", 'wb') as f:
pickle.dump(to_save, f)
def load_validation_data(block_size, eval_dataset):
# Load validation data similar to how train data is handled
val_path = os.path.join('data', eval_dataset, 'val.bin')
assert os.path.exists(val_path), f"Validation data file {val_path} not found."
# Assuming validation data is similar in format to train data
val_data = np.memmap(val_path, dtype=np.uint16, mode='r')
return val_data
def get_batch(data, block_size, device):
# Create a random batch from the dataset
ix = torch.randint(len(data) - block_size, (1,))
x = torch.stack([torch.from_numpy((data[i:i + block_size]).astype(np.int64)) for i in ix])
y = torch.stack([torch.from_numpy((data[i + 1:i + 1 + block_size]).astype(np.int64)) for i in ix])
return x.to(device), y.to(device)
def calculate_validation_loss(model, val_data, block_size, eval_iters, device, dtype):
model.eval()
losses = []
with torch.no_grad():
total_time = 0
for _ in range(eval_iters):
X, Y = get_batch(val_data, block_size, device)
with torch.amp.autocast(device_type=device, dtype=dtype):
start = time.perf_counter()
logits, loss = model(X, Y)
end = time.perf_counter()
total_time += (end - start)
losses.append(loss.item())
print(f"Elapsed time: {total_time} seconds")
return np.mean(losses)
def main():
args = parse_args()
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
device_type = 'cuda' if 'cuda' in args.device else 'cpu'
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16, 'float32': torch.float32}[args.dtype]
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
out_dir = os.path.join(args.out_dir, timestamp)
os.makedirs(out_dir, exist_ok=True)
save_args(args, out_dir)
if args.init_from == 'resume':
ckpt_path = os.path.join(args.out_dir, 'ckpt.pt')
checkpoint = torch.load(ckpt_path, map_location=args.device)
checkpoint['model_args']['dropout'] = 0.0
if args.save_avg_vector:
print(f"saving {args.save_avg_vector}")
checkpoint['model_args']['obtain_vector_at_layer_idx'] = args.apply_to_layer_idx
checkpoint['model_args']['obtain_vector_file'] = args.save_avg_vector
# If vectors are provided, load and subtract them, then apply to a designated layer during generation
if args.apply_vector_file1 and args.apply_vector_file2:
vector1 = np.load(args.apply_vector_file1)
vector2 = np.load(args.apply_vector_file2)
diff_vector = vector1 - vector2
torch.from_numpy(diff_vector).float().to(args.device)
diff_vector_tensor = torch.from_numpy(diff_vector).float().to(args.device)
diff_vector_cpu = diff_vector_tensor.cpu().numpy() # Move the tensor to CPU and convert it to a NumPy array
np.save("temp.npy", diff_vector_cpu)
# Convert to tensor and set in the model for application at the designated layer
checkpoint['model_args']['apply_vector_file']= "temp.npy"
checkpoint['model_args']['apply_vector_at_layer_idx']= args.apply_to_layer_idx
checkpoint['model_args']['apply_vector_scaling_factor']= args.steering_vector_scaling_factor
gptconf = GPTConfig(**checkpoint['model_args'])
model = GPT(gptconf)
state_dict = checkpoint['model']
unwanted_prefix = '_orig_mod.'
for k, v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
if args.quantization_data_file:
save_quantized_data(state_dict, args.quantization_data_file)
model.load_state_dict(state_dict, strict=False)
else:
# Need to create a completely "default" GPTConfig and overwrite using model_variations
gptconf = GPTConfig()
variation_dict = model_variation_dictionary[args.init_from]
for k in variation_dict:
gptconf[k] = variation_dict[k]
model = GPT.from_pretrained(gptconf, model_type=args.init_from)
# Load meta information if available
load_meta = False
meta_path = None
separator_token = None
if args.init_from == 'resume' and 'config' in checkpoint and 'dataset' in checkpoint['config']:
meta_paths = [
os.path.join(args.out_dir, 'meta.pkl'),
os.path.join('data', checkpoint['config']['dataset'], 'meta.pkl')
]
for meta_path in meta_paths:
if os.path.exists(meta_path):
load_meta = True
break
if load_meta:
print(f"Loading meta from {meta_path}...")
with open(meta_path, 'rb') as f:
meta = pickle.load(f)
if 'tokenizer' in meta and meta['tokenizer'] == 'tiktoken':
enc = tiktoken.get_encoding(meta['tiktoken_encoding'])
print(f"using tiktoken encoding {meta['tiktoken_encoding']}")
encode = lambda s: enc.encode(s, allowed_special={""})
decode = lambda l: enc.decode(l)
elif 'tokenizer' in meta and meta['tokenizer'] == 'sentencepiece':
separator_token = "▁"
stoi, itos = meta['stoi'], meta['itos']
encode = lambda s: [stoi[c] for c in s]
decode = lambda l: ''.join([itos[i] for i in l])
elif args.token_boundary:
stoi, itos = meta['stoi'], meta['itos']
encode = lambda s: [stoi[c] for c in s]
decode = lambda l: args.token_boundary.join([itos[i] for i in l])
else:
stoi, itos = meta['stoi'], meta['itos']
encode = lambda s: [stoi[c] for c in s]
decode = lambda l: ''.join([itos[i] for i in l])
if args.start.startswith('FILE:'):
with open(args.start[5:], 'r', encoding='utf-8') as f:
args.start = f.read()
start_ids = encode(args.start)
model.eval()
model.to(args.device)
# Print the model summary
if args.print_model_info:
print_summary(model)
print_model_blocks(model)
print_module_structure(model)
if args.compile:
model = torch.compile(model)
# Inference with different block size (note: for this one cannot use abs pos embeddings)
if args.block_size:
model.update_block_size(args.block_size)
# Inference with different number of angles
if args.sym_rot_num_angles:
model.update_num_angles(args.sym_rot_num_angles)
# Inference with different Rope Length
if args.rope_length:
model.update_rope_length(args.rope_length)
if args.eval_only:
print("Running in eval_only mode...")
# Load the validation dataset
print(model.config.block_size)
val_data = load_validation_data(model.config.block_size,
args.eval_dataset)
# Calculate validation loss
val_loss = calculate_validation_loss(model, val_data,
model.config.block_size,
args.eval_iters, args.device, ptdtype)
print(f"Validation Loss: {val_loss:.4f}")
return
x = torch.tensor(start_ids, dtype=torch.long, device=args.device)[None, ...]
# Obtain vector from the specified layer and save it to a file if required
if args.save_avg_vector:
x = torch.tensor(start_ids, dtype=torch.long, device=args.device)[None, ...]
# Run the model to trigger vector extraction
with torch.no_grad():
with ctx:
block_size = args.block_size if args.block_size else model.config.block_size
idx_cond = x if x.size(1) <= block_size else x[:, -block_size:]
logits, _ = model(idx_cond)
print(f"Obtained vector saved to {args.save_avg_vector}")
if args.interactive:
interactive_generation(model, start_ids, args.device, args.max_new_tokens, args.temperature, args.top_k, args.stop_string, decode, encode)
else:
# Run generation
with torch.no_grad():
with ctx:
for k in range(args.num_samples):
if args.use_lsv:
model.set_lsv_index(k % args.lsv_size)
print("vector", k % args.lsv_size)
if args.lsv_scaling_factor is not None:
model.set_lsv_scaling_factor(args.lsv_scaling_factor)
if args.lsv_mixture is not None:
model.set_lsv_mode(2)
model.set_lsv_mixture(args.lsv_mixture)
else:
model.set_lsv_mode(1)
x = torch.tensor(start_ids, dtype=torch.long, device=args.device)[None, ...]
block_size = args.block_size if args.block_size else model.config.block_size
for step in range(args.max_new_tokens):
idx_cond = x if x.size(1) <= block_size else x[:, -block_size:]
logits, _ = model(idx_cond)
logits = logits[:, -1, :] / args.temperature
if args.top_k is not None:
v, _ = torch.topk(logits, min(args.top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
x = torch.cat((x, idx_next), dim=1)
if args.show_heatmaps:
selected_token = decode([idx_next[0].item()])
save_chart(probs, x, decode, step, out_dir, args.last_k_tokens, args.chart_type, selected_token)
output_line = decode(x[0].tolist()).replace(separator_token, " ") if separator_token else decode(x[0].tolist())
if args.apply_vector_file1:
print(f"Scaling factor: {args.steering_vector_scaling_factor}")
print("[bold green]" + output_line)
print('---------------')
if args.sample_file:
with open(args.sample_file, "w") as file:
file.write(output_line)
if __name__ == "__main__":
main()