-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTbsShieldRpm.h
218 lines (184 loc) · 4.29 KB
/
TbsShieldRpm.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#ifndef TbsShieldRpm_h
#define TbsShieldRpm_h
#include <Arduino.h>
//-------------------------------------------------------------------
// use pattern for cycle read:
//if (ReadSamplesCycles())
//{
// for (uint8_t index = 0; index < ChannelCount; index++)
// {
// if (SampleForCycleReady(index))
// {
// int16_t value = SampleAverageKpa100(index);
// }
// }
//}
//
// use pattern for calibrate:
// for some number of ms
// ClearSamples();
// ReadSamples();
// then
// CalibrateWithSamples();
//
//-------------------------------------------------------------------
class TbsShieldRpm
{
public:
const static uint32_t kPa1000PerAdcUnit = 54; // 0.05425347 per ADC unit;
const static uint16_t adcOffset = 20; // 0.1v-4.6v,
TbsShieldRpm( uint8_t channelCount );
void Setup();
uint8_t ChannelCount() const
{
return m_channelCount;
}
void ReadSamples()
{
ReadAllSamples(true);
}
uint8_t ReadSamplesCycle()
{
return ReadAllSamples(false);
}
void ClearSamples();
void CalibrateCyclesWithSamples();
void CalibrateAtZeroWithSamples();
int32_t SampleMinKpa100( uint8_t channel ) const
{
return ConvertToKpa100(m_sampleCalibrate.ips[channel] - SampleMin(channel));
}
int32_t SampleMaxKpa100( uint8_t channel ) const
{
return ConvertToKpa100(m_sampleCalibrate.ips[channel] - SampleMax(channel));
}
int32_t SampleAverageKpa100( uint8_t channel ) const
{
return ConvertToKpa100(m_sampleCalibrate.ips[channel] - SampleAverage(channel));
}
bool SampleForCycleReady( uint8_t channel ) const
{
return m_sampleCycle[channel].IsNewCycle;
}
int SampleWidth( uint8_t channel ) const
{
return m_sampleCycle[channel].Count;
}
int32_t SampleMin( uint8_t channel ) const
{
return m_sampleCycle[channel].MinValue;
}
int32_t SampleMax( uint8_t channel ) const
{
return m_sampleCycle[channel].MaxValue;
}
int32_t SampleAverage( uint8_t channel ) const
{
int count = m_sampleCycle[channel].Count;
if (count > 0)
{
return m_sampleCycle[channel].Sum / count;
}
return 0;
}
private:
// types
struct Sample
{
Sample(uint8_t channelCount)
{
ips = new int16_t[channelCount];
}
~Sample()
{
delete[] ips;
}
int16_t* ips;
};
struct SampleCycle
{
int32_t Sum;
uint16_t Count;
int16_t MinValue;
int16_t MaxValue;
int16_t TopTrigger;
int16_t BottomTrigger;
bool IsWaitingOnUpCurve; // looking for samples going up
bool IsNewCycle;
void SetTriggers( int16_t top, int16_t center, int16_t bottom )
{
TopTrigger = center + (top - center) * 2 / 3;
BottomTrigger = center - (center - bottom) * 2 / 3;
}
void Clear()
{
Sum = 0;
Count = 0;
MinValue = 32767;
MaxValue = -32768;
IsWaitingOnUpCurve = true;
IsNewCycle = false;
}
void Include( int16_t value )
{
Sum += value;
Count++;
MinValue = min(MinValue, value);
MaxValue = max(MaxValue, value);
}
bool Track( int16_t lastValue, int16_t newValue )
{
bool isValueReady = false;
if (IsNewCycle)
{
Clear();
}
//if (newValue < 100 || newValue > 923)
//{
// return false; // value ignore as outside sensor range
//}
Include( newValue );
if (IsWaitingOnUpCurve)
{
if (newValue > TopTrigger)
{
IsWaitingOnUpCurve = false;
}
}
else
{
if (newValue < BottomTrigger)
{
if (Count > 0)
{
isValueReady = true;
}
IsNewCycle = true;
}
}
return isValueReady;
}
};
// members
int32_t ConvertToKpa100( int32_t adcValue ) const
{
// cap readings as adcValue has been offset due to calibration
adcValue = max(0L, min(1023L, adcValue));
int32_t kPa100Value = (adcValue * kPa1000PerAdcUnit) / 10L;
return kPa100Value;
}
void InitFilteringOnFirstSample(const Sample& sample);
int16_t FastLowAmplitudeNoiseFilter(int16_t newInputValue, int16_t priorOutputValue) const;
uint8_t ReadAllSamples(bool isIgnoringCycles);
// variables
const uint8_t m_channelCount;
SampleCycle* m_sampleCycle;
Sample m_prevOptimal;
bool m_isFilteringInitialized;
int16_t m_maxCycle;
int16_t m_centerCycle;
int16_t m_minCycle;
Sample m_sampleCalibrate; // sensor reading at normal air pressure (no vacume)
int16_t m_noiseMaxAmplitude; // calculated at normal air pressure
};
#endif