-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathvalue_net.py
executable file
·60 lines (51 loc) · 2.03 KB
/
value_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torch
import torch.nn as nn
import torch.autograd as autograd
from torch.autograd import Variable
import torch.nn.functional as F
import math
import numpy as np
from pointer_net import Encoder
from pointer_net import Attention
class CriticNetwork(nn.Module):
"""Useful as a baseline in REINFORCE updates"""
def __init__(self,
embedding_dim,
hidden_dim,
n_process_block_iters,
tanh_exploration,
use_tanh,
use_cuda):
super(CriticNetwork, self).__init__()
self.hidden_dim = hidden_dim
self.n_process_block_iters = n_process_block_iters
self.encoder = Encoder(
embedding_dim,
hidden_dim,
use_cuda)
self.process_block = Attention(hidden_dim,
use_tanh=use_tanh, C=tanh_exploration, use_cuda=use_cuda)
self.sm = nn.Softmax()
self.decoder = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, 1)
)
def forward(self, inputs):
"""
Args:
inputs: [embedding_dim x batch_size x sourceL] of embedded inputs
"""
(encoder_hx, encoder_cx) = self.encoder.enc_init_state
encoder_hx = encoder_hx.unsqueeze(0).repeat(inputs.size(1), 1).unsqueeze(0)
encoder_cx = encoder_cx.unsqueeze(0).repeat(inputs.size(1), 1).unsqueeze(0)
# encoder forward pass
enc_outputs, (enc_h_t, enc_c_t) = self.encoder(inputs, (encoder_hx, encoder_cx))
# grab the hidden state and process it via the process block
process_block_state = enc_h_t[-1]
for i in range(self.n_process_block_iters):
ref, logits = self.process_block(process_block_state, enc_outputs)
process_block_state = torch.bmm(ref, self.sm(logits).unsqueeze(2)).squeeze(2)
# produce the final scalar output
out = self.decoder(process_block_state)
return out