-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathVBA_getNoise.m
80 lines (73 loc) · 2.71 KB
/
VBA_getNoise.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
function [ehat,v_e,etahat,v_eta] = VBA_getNoise(posterior,out)
% returns the Laplace approximation to the innovations posterior density
% function [ehat,v_e,etahat,v_eta] = VBA_getNoise(posterior)
% This may be useful if one is interested in recovering, e.g., the state
% noise that enters and perturbs the system. In particular, posterior
% covariances are attached to state noise, which means that statistical
% inference can be performed in the usual way...
% IN:
% - posterior/out: output structures of VBA_NLStateSpaceModel.m
% OUT:
% - ehat/etahat: the 1st-order moment of the posterior density on the
% measurement (resp. state) noise
% - v_e/v_eta: the second-order moment of the posterior density on the
% measurement (resp. state) noise
dim = out.dim;
options = out.options;
u = out.u;
y = out.y;
ehat = zeros(dim.p,dim.n_t);
v_e = cell(1,dim.n_t);
etahat = zeros(dim.n,dim.n_t);
v_eta = cell(1,dim.n_t);
% initial condition
if dim.n > 0
[fx,dfdx,dfdp] = VBA_evalFun('f',posterior.muX0,posterior.muTheta,u(:,1),options,dim,1);
etahat(:,1) = posterior.muX(:,1) - fx;
if isinf(posterior.a_alpha) && isequal(posterior.b_alpha,0)
v_eta{1} = zeros(dim.n,dim.n);
else
v_eta{1} = posterior.SigmaX.current{1} ...
+ dfdx'*posterior.SigmaX0*dfdx;
if dim.n_theta > 0
v_eta{1} = v_eta{1} + dfdp'*posterior.SigmaTheta*dfdp;
end
end
end
[gx,dgdx,dgdp] = VBA_evalFun('g',posterior.muX(:,1),posterior.muPhi,u(:,1),options,dim,1);
ehat(:,1) = y(:,1) - gx;
v_e{1} = zeros(dim.p,dim.p);
if dim.n > 0
v_e{1} = dgdx'*posterior.SigmaX.current{1}*dgdx;
end
if dim.n_phi > 0
v_e{1} = v_e{1} + dgdp'*posterior.SigmaPhi*dgdp;
end
% loop over time samples
for t = 2:dim.n_t
if dim.n > 0
[fx,dfdx,dfdp] = VBA_evalFun('f',posterior.muX(:,t-1),posterior.muTheta,u(:,t),options,dim,t);
etahat(:,t) = posterior.muX(:,t) - fx;
if isinf(posterior.a_alpha) && isequal(posterior.b_alpha,0)
v_eta{t} = zeros(dim.n,dim.n);
else
P = [-dfdx',eye(dim.n)];
jointCov = ...
[ posterior.SigmaX.current{t} posterior.SigmaX.inter{t-1}'
posterior.SigmaX.inter{t-1} posterior.SigmaX.current{t-1} ];
v_eta{t} = P*jointCov*P';
if dim.n_theta > 0
v_eta{t} = v_eta{t} + dfdp'*posterior.SigmaTheta*dfdp;
end
end
end
[gx,dgdx,dgdp] = VBA_evalFun('g',posterior.muX(:,t),posterior.muPhi,u(:,t),options,dim,t);
ehat(:,t) = y(:,t) - gx;
v_e{t} = zeros(dim.p,dim.p);
if dim.n > 0
v_e{t} = dgdx'*posterior.SigmaX.current{t}*dgdx;
end
if dim.n_phi > 0
v_e{t} = v_e{t} + dgdp'*posterior.SigmaPhi*dgdp;
end
end