-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathVBA_PRESS.m
110 lines (95 loc) · 3.11 KB
/
VBA_PRESS.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
function [posterior,out] = VBA_PRESS(y,u,f_fname,g_fname,dim,options)
% Train/test predictive power evaluation for VBA model inversion.
% function [posterior,out] = VBA_PRESS(y,u,f_fname,g_fname,dim,options)
% This function evaluates the predictive power of any nonlinear state-space
% model of the form:
% y_t = g( x_t,u_t,phi ) + e_t
% x_t = f( x_t-1,u_t,theta ) + f_t
% using a VBA scheme (see VBA_NLStateSpaceModel.m).
% The deafult train/test cross-validation procedure is a leave-one-out
% scheme, and the predictive power is measured in terms of the resulting
% percentage of variance explained (R2_cv). First, one computes the
% predictive sum-of-square residual error (PRESS) as follows:
% PRESS = sum_i (y_i-E[g(x)|y_\i])^2
% where E[g(x)|y_\i] is the model prediction for y_i, given all the data
% but y_i.
% The predictive power is then defined as:
% R2_cv = 1 - PRESS/TSS
% where TSS = sum_i (y_i-E[y])^2 is the total data variance.
% IN: [see VBA_NLStateSpaceModel.m]. Additional inputs are provided
% through the structure options.cv, which contains the following fields:
% .verbose: verbose mode
% .DisplayWin:
% OUT: [see VBA_NLStateSpaceModel.m]. Additional outputs are provided
% through the structure out.cv, which contains the following fields:
% .press: the predictive sum-of-square residual error
% .R2: the predictive power, in terms of R2_cv
try
options.isYout;
catch
options.isYout = zeros(size(y));
end
try
options.cv.verbose;
catch
options.cv.verbose = 1;
end
try
options.verbose;
catch
options.verbose = 0;
end
try
options.DisplayWin;
catch
options.DisplayWin = 0;
end
% Get time
et0 = clock;
% 0- check basic data dimension requirements
indIn = find(options.isYout==0);
if length(indIn) < 3
disp('Error: VBA_PRESS: data dimension is lower than 3!!')
posterior = [];
out = [];
return
else
if options.cv.verbose
fprintf(1,'VBA_PRESS: leave-one-out cross-validation scheme:...')
fprintf(1,'%6.2f %%',0)
end
end
% 1- perform leave-one-out scheme
Eg = NaN(size(y));
ii = 0;
for i=1:size(y,1)
for j=1:size(y,2)
options0 = options;
if options.isYout(i,j)==0
options0.isYout(i,j) = 1;
[p,o] = VBA_NLStateSpaceModel(y,u,f_fname,g_fname,dim,options0);
Eg(i,j) = o.suffStat.gx(i,j);
ii = ii +1;
if options.cv.verbose
fprintf(1,repmat('\b',1,8))
fprintf(1,'%6.2f %%',floor(100*ii/length(indIn)))
end
end
end
end
% Display progress
if options.verbose
fprintf(1,repmat('\b',1,8))
fprintf(1,[' OK (took ',num2str(etime(clock,et0)),' seconds).'])
fprintf(1,'\n')
end
% 2- evaluate PRESS and R2_cv
PRESS = sum((y(indIn)-Eg(indIn)).^2);
TSS = sum((y(indIn)-mean(y(indIn))).^2);
R2_cv = 1 - PRESS./TSS;
% 3- invert the model conditional on all data and wrap-up
VBA_disp({' ','VBA_PRESS: model inversion given full-data...'},options.cv)
[posterior,out] = VBA_NLStateSpaceModel(y,u,f_fname,g_fname,dim,options);
out.cv.press = PRESS;
out.cv.R2 = R2_cv;
VBA_disp('VBA_PRESS: model inversion given full-data... OK.',options.cv)