-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathVBA_LMEH0.m
59 lines (54 loc) · 1.69 KB
/
VBA_LMEH0.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
function [LLH0] = VBA_LMEH0(y,options)
% evaluates the log-evidence of the null (H0) model
% [LLH0] = VBA_LMEH0(y)
% This function evaluates the exact log marginal likelihood of a null model
% H0, which basically assumes that the data only contain Gaussian noise of
% unknown variance, i.e. y ~ N(0,sigma^-1*I), where sigma is unknown, with
% Jeffrey's priors, i.e. sigma ~ Gamma(1,1). This is a trivial (null)
% model, to be compared with the model evidence of a non-trivial model as a
% diagnostic measure.
% IN:
% - y: the data matrix;
% OUT:
% - LLH0: the log evidence of the null model
LLH0 = 0;
% gaussian source
s_g = find([options.sources(:).type]==0);
for s=1:length(s_g)
y_i = options.sources(s_g(s)).out ;
y_s = y(y_i,:);
y_s = y_s(options.isYout(y_i,:)==0);
LLH0 = LLH0 + lev_GLM(VBA_vec(y_s),ones(numel(y_s),1));
% try
% a0 = options.priors.a_sigma(s);
% b0 = options.priors.b_sigma(s);
% catch
% a0 = 1;
% b0 = 1;
% end
% n = numel(y_s);
% y_s = y_s(:);
% y2 = y_s'*y_s;
% alpha = n/2 + a0;
% beta = y2./2 + b0;
% LLH0 = LLH0 -0.5*n*log(2*pi) + a0.*log(b0) - alpha.*log(beta) - gammaln(a0) + gammaln(alpha);
end
% binomial sources
s_b = find([options.sources(:).type]==1);
for s=1:length(s_b)
y_i = options.sources(s_b(s)).out ;
y_s = y(y_i,:);
y_s = y_s(options.isYout(y_i,:)==0);
n = numel(y_s);
LLH0 = LLH0 + n*log(.5);
end
% multinomial sources
s_m = find([options.sources(:).type]==2);
for s=1:length(s_m)
y_i = options.sources(s_m(s)).out ;
y_s = y(y_i,:);
isYinIdx = find(~any(options.isYout(y_i,:)));
y_s = y_s(:,isYinIdx);
[c,n] = size(y_s);
LLH0 = LLH0 + n*log(1/c);
end