-
Notifications
You must be signed in to change notification settings - Fork 0
/
proposed_adaptation_network.py
288 lines (248 loc) · 10.7 KB
/
proposed_adaptation_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# -*- coding: utf-8 -*-
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from shakedrop import ShakeDrop
class Self_Attn(nn.Module):
""" Self attention Layer"""
def __init__(self,in_dim,activation):
super(Self_Attn,self).__init__()
self.chanel_in = in_dim
self.activation = activation
self.query_conv = nn.Conv2d(in_channels = in_dim , out_channels = in_dim//8 , kernel_size= 1)
self.key_conv = nn.Conv2d(in_channels = in_dim , out_channels = in_dim//8 , kernel_size= 1)
self.value_conv = nn.Conv2d(in_channels = in_dim , out_channels = in_dim , kernel_size= 1)
self.gamma = nn.Parameter(torch.zeros(1))
self.softmax = nn.Softmax(dim=-1) #
def forward(self,x):
"""
inputs :
x : input feature maps( B X C X W X H)
returns :
out : self attention value + input feature
attention: B X N X N (N is Width*Height)
"""
m_batchsize,C,width ,height = x.size()
proj_query = self.query_conv(x).view(m_batchsize,-1,width*height).permute(0,2,1) # B X CX(N)
proj_key = self.key_conv(x).view(m_batchsize,-1,width*height) # B X C x (*W*H)
energy = torch.bmm(proj_query,proj_key) # transpose check
attention = self.softmax(energy) # BX (N) X (N)
proj_value = self.value_conv(x).view(m_batchsize,-1,width*height) # B X C X N
out = torch.bmm(proj_value,attention.permute(0,2,1) )
out = out.view(m_batchsize,C,width,height)
out = self.gamma*out + x
return out,attention
class ShakeBasicBlock(nn.Module):
def __init__(self, in_ch, out_ch, stride=1, p_shakedrop=1.0):
super(ShakeBasicBlock, self).__init__()
self.downsampled = stride == 2
self.branch = self._make_branch(in_ch, out_ch, stride=stride)
self.shortcut = not self.downsampled and None or nn.AvgPool2d(2)
self.shake_drop = ShakeDrop(p_shakedrop)
def forward(self, x):
h = self.branch(x)
h = self.shake_drop(h)
h0 = x if not self.downsampled else self.shortcut(x)
pad_zero = Variable(torch.zeros(h0.size(0), h.size(1) - h0.size(1), h0.size(2), h0.size(3)).float()).cuda()
h0 = torch.cat([h0, pad_zero], dim=1)
return h + h0
def _make_branch(self, in_ch, out_ch, stride=1):
return nn.Sequential(
nn.BatchNorm2d(in_ch),
nn.Conv2d(in_ch, out_ch, 3, padding=1, stride=stride, bias=False),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
nn.Conv2d(out_ch, out_ch, 3, padding=1, stride=1, bias=False),
nn.BatchNorm2d(out_ch))
def sample_gumbel(shape, eps=1e-20):
U = torch.rand(shape).cuda()
# U = nn.init.ones_(torch.nn.Parameter(torch.empty(64, 64, dtype=torch.float),requires_grad=True)).cuda()
# return -Variable(torch.log(-torch.log(1.0 + eps) + eps))
return -Variable(torch.log(-torch.log(U + eps) + eps))
def gumbel_softmax_sample(logits, temperature):
y = logits + sample_gumbel(logits.size())
#y = logits + 1.0
# return F.softmax(torch.log(logits) / temperature,dim=0)
return F.softmax(logits / temperature, dim=0)
def gumbel_softmax(logits, temperature):
"""
ST-gumple-softmax
input: [*, n_class]
return: flatten --> [*, n_class] an one-hot vector
"""
y = gumbel_softmax_sample(logits, temperature)
return y
# return y.view( latent_dim , categorical_dim)
latent_dim = 64
categorical_dim = 64 # one-of-K vector
#@weak_module
class OriginalLinear(nn.Module):
r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`
Args:
in_features: size of each input sample
out_features: size of each output sample
bias: If set to ``False``, the layer will not learn an additive bias.
Default: ``True``
Shape:
- Input: :math:`(N, *, H_{in})` where :math:`*` means any number of
additional dimensions and :math:`H_{in} = \text{in\_features}`
- Output: :math:`(N, *, H_{out})` where all but the last dimension
are the same shape as the input and :math:`H_{out} = \text{out\_features}`.
Attributes:
weight: the learnable weights of the module of shape
:math:`(\text{out\_features}, \text{in\_features})`. The values are
initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
:math:`k = \frac{1}{\text{in\_features}}`
bias: the learnable bias of the module of shape :math:`(\text{out\_features})`.
If :attr:`bias` is ``True``, the values are initialized from
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
:math:`k = \frac{1}{\text{in\_features}}`
Examples::
>>> m = nn.Linear(20, 30)
>>> input = torch.randn(128, 20)
>>> output = m(input)
>>> print(output.size())
torch.Size([128, 30])
"""
__constants__ = ['bias']
def __init__(self, in_features, out_features, bias=False):
super(OriginalLinear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = nn.Parameter(torch.Tensor(out_features, in_features))
if bias:
self.bias = nn.Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
#self.weight = torch.abs(self.weight)
def reset_parameters(self):
# sample from uniform distribution
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(self.bias, -bound, bound)
nn.init.uniform_(self.bias,-bound, bound)
#self.weight = torch.abs(self.weight)
# @weak_script_method
def forward(self, input):
weight = self.weight
if input.dim() == 2 and self.bias is not None:
# fused op is marginally faster
#weight = F.softmax(F.softmax(F.relu(self.weight),dim=0),dim=1)
ret = torch.addmm(self.bias, input,weight)
else:
output = input.matmul(weight)
if self.bias is not None:
output += self.bias
ret = output
return ret,weight
# return ret,F.relu(self.weight)
# return linear(input, self.weight, self.bias)
def extra_repr(self):
return 'in_features={}, out_features={}, bias={}'.format(
self.in_features, self.out_features, self.bias is not None
)
class ShakePyramidNet(nn.Module):
def __init__(self, depth=110, alpha=270, label=10):
super(ShakePyramidNet, self).__init__()
in_ch = 16
# for BasicBlock
n_units = (depth - 2) // 6
in_chs = [in_ch] + [in_ch + math.ceil((alpha / (3 * n_units)) * (i + 1)) for i in range(3 * n_units)]
block = ShakeBasicBlock
self.in_chs, self.u_idx = in_chs, 0
self.ps_shakedrop = [1 - (1.0 - (0.5 / (3 * n_units)) * (i + 1)) for i in range(3 * n_units)]
self.ll = nn.LeakyReLU(0.2) # NN.UTILS.SPECTRAL_NORM
self.convs0 = nn.ModuleList([nn.utils.spectral_norm(nn.Conv2d(3, 16*16, kernel_size=4, stride=4, padding=0, bias=False)) for _ in range(64)])
self.bns0 = nn.ModuleList([nn.BatchNorm2d(16*16) for _ in range(64)])
self.pixelshuffles = nn.ModuleList([nn.PixelShuffle(4) for _ in range(64)])
self.attn1 = Self_Attn(256, 'relu')
self.u = nn.init.constant_(torch.nn.Parameter(torch.empty(4096, dtype=torch.float),requires_grad=True),1.00/64)
self.ml1 = nn.Linear(4096,4096)
self.ml2 = nn.Linear(4096,4096)
self.matrix = OriginalLinear(64,64)
#Multu Layer Perceptron
self.sm = nn.Softmax()
self.fc1 = nn.Linear(64,64)
self.bn1 = nn.BatchNorm1d(64)
self.fc2 = nn.Linear(64,64)
self.bn2 = nn.BatchNorm1d(64)
self.fc3 = nn.Linear(64,64)
self.bn3 = nn.BatchNorm1d(64)
self.pixsh = nn.PixelShuffle(4)
self.c_in = nn.Conv2d(16, in_chs[0], 3, padding=1)
self.bn_in = nn.BatchNorm2d(in_chs[0])
self.layer1 = self._make_layer(n_units, block, 1)
self.layer2 = self._make_layer(n_units, block, 2)
self.layer3 = self._make_layer(n_units, block, 2)
self.bn_out = nn.BatchNorm2d(in_chs[-1])
self.fc_out = nn.Linear(in_chs[-1], label)
# Initialize paramters
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()
def forward(self, x):
x_stack = None
idx = 0
for i in range(8):
tmp = None
for j in range(8):
out = self.ll(self.bns0[idx](self.convs0[idx](x[:,:,i*4:(i+1)*4,j*4:(j+1)*4]))).view(-1,256,1)
if tmp is None:
tmp = out
else:
tmp = torch.cat([tmp,out],dim=2)
idx = idx + 1
if x_stack is None:
x_stack = tmp
else:
x_stack = torch.cat([x_stack,tmp],dim=2)
h = x_stack
pros = h
stack = None
stack_recon = None
stack,mat = self.matrix(pros)
stack_recon = torch.matmul(mat,mat.t())
x_stack = None
for i in range(8):
tmp = None
for j in range(8):
out = stack[:,:,i*8+j].contiguous().view(-1,256,1,1)
if tmp is None:
tmp = out
else:
tmp = torch.cat([tmp,out],dim=3)
if x_stack is None:
x_stack = tmp
else:
x_stack = torch.cat([x_stack,tmp],dim=2)
h = x_stack
h = self.pixsh(h)
feature = h
h = self.bn_in(self.c_in(h))
h = self.layer1(h)
h = self.layer2(h)
h = self.layer3(h)
h = F.relu(self.bn_out(h))
h = F.avg_pool2d(h, 8)
h = h.view(h.size(0), -1)
h = self.fc_out(h)
return h,mat,feature
# return h,feature,h,torch.norm((torch.eye(64).cuda()-stack_recon)).sum()/(64*64),feature/(64*64),mat
def _make_layer(self, n_units, block, stride=1):
layers = []
for i in range(int(n_units)):
layers.append(block(self.in_chs[self.u_idx], self.in_chs[self.u_idx+1],
stride, self.ps_shakedrop[self.u_idx]))
self.u_idx, stride = self.u_idx + 1, 1
return nn.Sequential(*layers)