forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_derivatives.py
631 lines (543 loc) · 29.1 KB
/
load_derivatives.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
# Parses derivatives.yaml into autograd functions
#
# Each autograd function is represented by `DifferentiabilityInfo` containing
# a list of `Derivative`. See `tools.codegen.api.autograd` for the data models.
from collections import defaultdict
import re
from typing import Counter, Sequence, Any, Tuple, List, Set, Dict, Match, Optional
import yaml
from tools.codegen.api.autograd import (Derivative, DifferentiabilityInfo,
SavedAttribute, ForwardDerivative)
from tools.codegen.api.types import (Binding, CppSignatureGroup, NamedCType, BaseCType, VectorCType,
intArrayRefT, tensorOptionsT, typeAndSizeT, longT, boolT,
tensorGeometryT, scalarTypeT, SpecialArgName,
OptionalCType, stringT)
from tools.codegen.api import cpp
from tools.codegen.gen import parse_native_yaml
from tools.codegen.context import with_native_function
from tools.codegen.model import FunctionSchema, NativeFunction, Variant, Type
from tools.codegen.utils import IDENT_REGEX, split_name_params, YamlLoader
_GLOBAL_LOAD_DERIVATIVE_CACHE = {}
def load_derivatives(derivatives_yaml_path: str, native_yaml_path: str) -> Sequence[DifferentiabilityInfo]:
# Do some caching as this is a deterministic function
global _GLOBAL_LOAD_DERIVATIVE_CACHE
key = (derivatives_yaml_path, native_yaml_path)
if key not in _GLOBAL_LOAD_DERIVATIVE_CACHE:
with open(derivatives_yaml_path, 'r') as f:
definitions = yaml.load(f, Loader=YamlLoader)
functions = parse_native_yaml(native_yaml_path).native_functions
# What's the difference between function schema v.s. signature?
# function schema is the complete declaration including mutability annotation / default value and etc.
# signature is the canonical schema for a group of functions (in-place/out/functional variants)
# that are semantically related.
functions_by_signature: Dict[FunctionSchema, List[NativeFunction]] = defaultdict(list)
functions_by_schema: Dict[str, NativeFunction] = dict()
for function in functions:
functions_by_signature[function.func.signature()].append(function)
assert str(function.func) not in functions_by_schema
functions_by_schema[str(function.func)] = function
# Keep track of how many of which ops we've seen so we can
# disambiguate them with a numeric suffix.
op_counter = Counter[str]()
infos = [
create_differentiability_info(defn, functions_by_signature, functions_by_schema, op_counter)
for defn in definitions]
_GLOBAL_LOAD_DERIVATIVE_CACHE[key] = infos
return _GLOBAL_LOAD_DERIVATIVE_CACHE[key]
@with_native_function
def cpp_arguments(f: NativeFunction) -> Sequence[Binding]:
return CppSignatureGroup.from_native_function(f, method=False).signature.arguments()
def create_derivative(f: NativeFunction, formula: str, var_names: Tuple[str, ...],
available_named_gradients: Sequence[str]) -> Derivative:
original_formula = formula
arguments: List[NamedCType] = [a.nctype.remove_const_ref() for a in cpp_arguments(f)]
return_names = tuple(n if n != 'self' else 'result' for n in cpp.return_names(f))
return_types = tuple(cpp.return_type(r).remove_const_ref() for r in f.func.returns)
named_returns = [NamedCType(name, type) for name, type in zip(return_names, return_types)]
formula, saved_inputs = saved_variables(formula, arguments, var_names)
formula, saved_outputs = saved_variables(formula, named_returns, var_names)
used_named_gradients = {name for name in available_named_gradients if re.search(IDENT_REGEX.format(name), formula)}
# Check that the referenced derivatives in the formula are in bounds
for i in used_gradient_indices(formula):
if i >= len(f.func.returns):
raise RuntimeError(
f'Out of bounds grads access: derivative formula for {cpp.name(f.func)} '
f'used grads[{i}], but the forward only returns {len(f.func.returns)} outputs.'
)
return Derivative(
formula=formula,
original_formula=original_formula,
var_names=var_names,
saved_inputs=saved_inputs,
saved_outputs=saved_outputs,
named_gradients=used_named_gradients,
)
def create_forward_derivative(f: NativeFunction, formula: str, names: Tuple[str, ...]) -> ForwardDerivative:
assert len(names) == 1, "Forward derivatives can define gradients for only one output at a time"
var_name = names[0]
var_type: Optional[Type] = None
for r in f.func.returns:
if r.name == var_name:
var_type = r.type
break
# Handle default return names
if var_type is None:
if var_name == "result":
assert len(f.func.returns) == 1
var_type = f.func.returns[0].type
else:
res = re.findall(r"^result(\d+)$", var_name)
if len(res) == 1:
arg_idx = int(res[0])
var_type = f.func.returns[arg_idx].type
assert var_type is not None, "No matching output for forward derivative definition"
return ForwardDerivative(
formula=formula,
var_name=var_name,
var_type=var_type,
required_inputs_fw_grad=None,
required_inputs_primal=None,
required_original_self_value=False,
is_reusing_outplace_formula=False)
def postprocess_forward_derivatives(
f: NativeFunction,
defn_name: str,
all_arg_names: List[str],
derivatives: List[Derivative],
forward_derivatives: List[ForwardDerivative],
args_with_derivatives: Sequence[Binding]
) -> List[ForwardDerivative]:
def find_required_inputs(formula: str, postfix: str) -> Tuple[str, ...]:
required_inputs = set()
for arg in args_with_derivatives:
if arg.type == 'at::TensorList':
# The functions taking TensorList handle everything internally
continue
arg_name = arg.name
found = re.search(IDENT_REGEX.format(arg_name), formula)
if found:
raise RuntimeError(f"The forward formula for {defn_name} is using the base name of the {arg_name} "
f"argument which is ambiguous. You should use {arg_name}_p to access the primal "
f"value and {arg_name}_t to access the tangent.")
found = re.search(IDENT_REGEX.format(arg_name + postfix), formula)
if found:
required_inputs.add(arg_name)
return tuple(required_inputs)
updated_derivatives: List[ForwardDerivative] = []
for defn in forward_derivatives:
formula = defn.formula
required_inputs_tangent = find_required_inputs(formula, "_t")
if formula == "auto_element_wise":
if (not len(args_with_derivatives) == 1) or len(forward_derivatives) > 1:
raise RuntimeError(f"Derivative definition of {defn_name} in derivatives.yaml defines the "
"forward definition of gradient as element_wise but this only "
"works for functions with a single differentiable input and a "
"single differentiable output.")
if not len(derivatives) == 1:
raise RuntimeError(f"Derivative definition of {defn_name} in derivatives.yaml defines the "
"forward definition of gradient as element_wise but it does not "
"defines the gradient formula for its argument which is required.")
# This transformation is based on the observation that for element-wise functions, the Jacobian
# matrix is diagonal and thus doing J * v is the same as (v^T J)^T (in practice, we ignore the transpositions)
# For the complex case, we use hermitian transpose and get (v.conj() J).conj()
# So here we are going to re-use the backward formula and replace two things:
# 1) all occurrences of "grad" with "foo_t.conj()", where foo is the name of the unique differentiable input.
# 2) all usage of an original input "foo" with its primal value "foo_p".
# 3) conjugate the final result
# For example, for abs, the backward formula is:
# grad * self.sgn()
# And this function generates a forward formula that is:
# (self_t.conj() * self_p.sgn()).conj()
backward_formula = derivatives[0].original_formula
input_name = args_with_derivatives[0].name
# Do replacement 1) of the grad
def repl(m: Any) -> str:
return f"{m.group(1)}{input_name}_t.conj(){m.group(2)}"
fw_formula = re.sub(IDENT_REGEX.format("grad"), repl, backward_formula)
# Do replacement 2) of the input variables
for arg in args_with_derivatives:
arg_name = arg.name
def repl(m: Any) -> str:
return f"{m.group(1)}{arg_name}_p{m.group(2)}"
fw_formula = re.sub(IDENT_REGEX.format(arg_name), repl, fw_formula)
# Do the final conjugate 3)
fw_formula = f"({fw_formula}).conj()"
# Since there is a single differentiable inputs and we necessarily need its tangent we can
# simply require all differentiable input's tangent.
required_inputs_tangent = tuple(all_arg_names)
formula = fw_formula
elif formula == "auto_linear":
if len(forward_derivatives) > 1:
raise RuntimeError(f"Derivative definition of {defn_name} in derivatives.yaml defines the "
"forward definition of gradient as linear but this only works "
"for functions with a single differentiable output.")
# This transformation is based on the observation that linear functions can be written as:
# y = f(x) = A * x
# For some matrix A and the Jacobian of the function f is also A.
# So doing J * v = A * v = f(v).
# Hence to do the jvp, we simply need to evaluate the function at the point v instead of x.
# We do this by calling the forward again by replacing any occurrence of the differentiable
# input "foo" by it's tangent "foo_t".
# Note that multiple inputs are not a problem as long as the function is truly linear wrt to
# the vector where all the differentiable inputs are stacked.
diff_arg_names = [arg.name for arg in args_with_derivatives]
assert len(diff_arg_names) > 0
# Do replacement of input variables
new_args = []
for arg_name in all_arg_names:
if arg_name in diff_arg_names:
arg_name = arg_name + "_t"
new_args.append(arg_name)
# Call into the forward again. We need two cases here to handle both Tensor methods and at:: functions.
if Variant.function in f.variants:
fw_formula = "at::{}({})".format(defn_name, ", ".join(new_args))
else:
assert Variant.method in f.variants
fw_formula = "{}.{}({})".format(new_args[0], defn_name, ", ".join(new_args[1:]))
# All of the input tangents are always used so all of them are required here.
required_inputs_tangent = tuple(diff_arg_names)
formula = fw_formula
# At this point, the formula is final and is not modified anymore.
# During forward formula, we use the primal instead of the input Tensors.
# This call inspects the formula to find for which input's primal are used.
required_inputs_primal = find_required_inputs(formula, "_p")
updated_derivatives.append(ForwardDerivative(
formula=formula,
var_name=defn.var_name,
var_type=defn.var_type,
required_inputs_fw_grad=required_inputs_tangent,
required_inputs_primal=required_inputs_primal,
required_original_self_value=False,
is_reusing_outplace_formula=False))
return updated_derivatives
def is_forward_derivative_definition(all_arg_names: List[str], names: Tuple[str, ...]) -> bool:
if len(names) > 1:
# Forward definition are always for a single output at a time
return False
name = names[0]
if name not in all_arg_names:
return True
else:
return False
def create_differentiability_info(
defn: Dict[Any, Any],
functions_by_signature: Dict[FunctionSchema, List[NativeFunction]],
functions_by_schema: Dict[str, NativeFunction],
op_counter: Counter[str],
) -> DifferentiabilityInfo:
"""Processes a single entry `defn` in derivatives.yaml"""
def canonical_function(functions: Sequence[NativeFunction], name: str) -> NativeFunction:
for f in functions:
if cpp.name(f.func) == name:
return f
# some functions only have in-place variants
assert name + '_' == cpp.name(functions[0].func)
return functions[0]
def split_names(raw_names: str) -> Tuple[str, ...]:
"""Given "foo, bar", return ["foo", "bar"]."""
return tuple(x.strip() for x in raw_names.split(','))
def check_grad_usage(defn_name: str, derivatives: Sequence[Derivative]) -> None:
"""
Check for some subtle mistakes one might make when writing derivatives.
These mistakes will compile, but will be latent until a function is
used with double backwards.
"""
uses_grad = False # true if any derivative uses "grad"
num_grads_uses = 0 # count of uses of "grads" or "grads[INDEX]"
uses_named_grads = False # true if any derivative uses "grad_{name}"
used_grads_indices: List[int] = [] # which indices of grads are used
for d in derivatives:
formula = d.formula
uses_grad = uses_grad or bool(re.findall(IDENT_REGEX.format('grad'), formula))
num_grads_uses += len(re.findall(IDENT_REGEX.format('grads'), formula))
uses_named_grads = uses_named_grads or bool(d.named_gradients)
used_grads_indices.extend(used_gradient_indices(formula))
# This is a basic sanity check: the number of places we see
# "grads" should be no fewer than the number of indices we see
# inside "grads". They may not be equal because we may use
# "grads" without an index.
assert num_grads_uses >= len(used_grads_indices)
# Thus if the number is equal, every use of grads is also
# indexed.
only_used_grads_indices = num_grads_uses == len(used_grads_indices)
if uses_grad and num_grads_uses > 0:
raise RuntimeError(f"Derivative definition of {defn_name} in derivatives.yaml illegally "
"mixes use of 'grad' and 'grads'. Consider replacing "
"occurrences of 'grad' with 'grads[0]'")
if only_used_grads_indices and set(used_grads_indices) == {0}:
raise RuntimeError(f"Derivative definition of {defn_name} in derivatives.yaml solely "
"refers to 'grads[0]'. If the first output is indeed the "
"only differentiable output, replace 'grads[0]' with 'grad'; "
"otherwise, there is a likely error in your derivatives "
"declaration.")
if uses_named_grads and (uses_grad or num_grads_uses > 0):
raise RuntimeError(
f'Derivative definition of {defn_name} in derivatives.yaml illegally '
'mixes use of "grad_RETURN_NAME" and "grad" or "grads[x]". Use '
'only one method for identifying gradients.')
@with_native_function
def set_up_derivatives(f: NativeFunction) -> Tuple[
Sequence[Derivative],
Sequence[ForwardDerivative],
Sequence[Binding],
Sequence[str],
Sequence[str],
]:
# Set up the derivative information
derivatives: List[Derivative] = []
forward_derivatives: List[ForwardDerivative] = []
non_differentiable_arg_names: List[str] = []
args_with_derivatives_set: Set[str] = set()
all_arg_names = [a.name for a in cpp_arguments(f)]
# output_differentiability is captured from the enclosed
# scope. Don't modify it.
#
# If it is not present, then no output is explicitly
# undifferentiable.
#
# It may be present and shorter than the length of return
# values. If that's the case, any return value that does not
# have a corresponding entry is considered not differentiable.
differentiability = output_differentiability or [True] * len(f.func.returns)
# A return is available as a named gradient ...
available_named_gradients = [
f'grad_{ret.name}' for ret, differentiable in zip(f.func.returns, differentiability)
# if it has not been explicitly made undifferentiable
if differentiable
# and if it has a name
and ret.name is not None
# and if its type is differentiable
and ret.type.is_tensor_like()]
for raw_names in sorted(defn.keys()):
formula = defn[raw_names]
names = split_names(raw_names)
if is_forward_derivative_definition(all_arg_names, names):
forward_derivatives.append(create_forward_derivative(f, formula, names))
else:
if formula.lower().strip() == 'non_differentiable':
non_differentiable_arg_names += names
else:
derivative = create_derivative(f, formula, names,
available_named_gradients)
derivatives.append(derivative)
args_with_derivatives_set |= set(names)
overlap = args_with_derivatives_set.intersection(non_differentiable_arg_names)
if overlap:
raise RuntimeError(f'derivatives definition for {defn} have overlapped non_differentiable '
f'and differentiable variables: {overlap}')
# Next, let us determine the list of inputs in order.
# TODO: do we need eagerly calculate and save it here? Can it be derived
# from NativeFunction and `derivatives` on callsites instead?
args_with_derivatives = [a for a in cpp_arguments(f) if a.name in args_with_derivatives_set]
# Postprocess forward derivatives definitions now that we know the differentiable arguments
forward_derivatives = postprocess_forward_derivatives(f, defn_name, all_arg_names, derivatives,
forward_derivatives, args_with_derivatives)
# Test to see if the use of 'grads' makes sense.
check_grad_usage(defn_name, derivatives)
return (derivatives, forward_derivatives, args_with_derivatives,
non_differentiable_arg_names, available_named_gradients)
# NB: Removes 'name' from defn dictionary
specification = defn.pop('name')
defn_name, _ = split_name_params(specification)
# NB: Removes 'output_differentiability' from defn dictionary
# `None` means all differentiable.
output_differentiability = defn.pop('output_differentiability', None)
output_differentiability_conditions = None
if output_differentiability and any([isinstance(diff, str) for diff in output_differentiability]):
if len(output_differentiability) != 1:
raise RuntimeError(f'Not supported: for {specification},'
f'output_differentiability must either be '
f'List[bool] or a List[str] where each str is a '
f'condition. In the case where it is a condition, '
f'we only support single-output functions. '
f'Please file us an issue. ')
output_differentiability_conditions = output_differentiability
output_differentiability = [True]
schema_function = functions_by_schema.get(specification)
if not schema_function:
avail = '\n'.join(k for k, v in functions_by_schema.items() if cpp.name(v.func) == defn_name)
raise RuntimeError(f'could not find ATen function for schema: {specification} '
f'. Available signatures:\n{avail}')
# now map this to the legacy schema; this isn't technically necessary, but we'd need some logic here
# to map in-place schemas to the out-of-place variants.
# TODO: maybe the logic to handle the legacy schema is no longer necessary?
signature = schema_function.func.signature()
functions = functions_by_signature[signature]
if len(functions) == 0:
avail = '\n'.join(str(k) for k, v in functions_by_signature.items() if cpp.name(k) == defn_name)
raise RuntimeError(f'could not find ATen function for legacy signature: {signature} '
f'corresponding to schema {specification}. Please report a bug to PyTorch. '
f'Available signatures:\n{avail}')
canonical = canonical_function(functions, defn_name)
if 'grad_input_mask' in (a.name for a in cpp_arguments(canonical)):
raise RuntimeError(f"Schema for {defn_name} has an argument named grad_input_mask, "
"but this name would be shadowed by our codegen. "
"Please use a different name in native_functions.yaml.")
if 'result' in (a.name for a in cpp_arguments(canonical)):
raise RuntimeError(f"Schema for {defn_name} has an argument named result, "
"but this is only allowed for outputs."
"Please use a different name in native_functions.yaml.")
(derivatives, forward_derivatives, args_with_derivatives,
non_differentiable_arg_names, available_named_gradients) = set_up_derivatives(canonical)
used_named_gradients: Set[str] = set()
for d in derivatives:
used_named_gradients |= d.named_gradients
# only assign an op name if we are actually going to calculate a derivative
op = None
if args_with_derivatives:
op_prefix = _create_op_prefix(defn_name)
op = f'{op_prefix}{op_counter[op_prefix]}'
op_counter[op_prefix] += 1
return DifferentiabilityInfo(
name=defn_name,
func=canonical,
op=op,
derivatives=derivatives,
forward_derivatives=forward_derivatives,
all_saved_inputs=dedup_vars([v for d in derivatives for v in d.saved_inputs]),
all_saved_outputs=dedup_vars([v for d in derivatives for v in d.saved_outputs]),
available_named_gradients=available_named_gradients,
used_named_gradients=used_named_gradients,
args_with_derivatives=args_with_derivatives,
non_differentiable_arg_names=non_differentiable_arg_names,
output_differentiability=output_differentiability,
output_differentiability_conditions=output_differentiability_conditions,
)
GRAD_INDEX_REGEX = r'(?:^|\W)grads\[(\d+)\]'
def used_gradient_indices(formula: str) -> List[int]:
"""Determine a list of gradient indices (the i in grads[i]) that
are used by the formula.
>>> used_gradient_indices("foo(grads[0], grads[1])")
[0, 1]
"""
return [int(i) for i in re.findall(GRAD_INDEX_REGEX, formula)]
def saved_variables(
formula: str,
nctypes: List[NamedCType],
var_names: Tuple[str, ...],
) -> Tuple[str, Tuple[SavedAttribute, ...]]:
def stride_expr(name: str) -> str:
assert var_names == (name,), (
'Replacement for ".strides()" is currently only supported for single derivatives of the same tensor '
'that ".strides()" is being called on.')
return f'strides_or_error({name}, "{name}")'
REPLACEMENTS: List[Tuple[str, Dict[str, Any]]] = [
# replace self.sizes() with self_sizes
(r'{}.sizes\(\)', {
'suffix': '_sizes',
'nctype': lambda name: NamedCType(name, BaseCType(intArrayRefT)),
}),
# replace self.options() with self_options
(r'{}.options\(\)', {
'suffix': '_options',
'nctype': lambda name: NamedCType(name, BaseCType(tensorOptionsT)),
}),
# replace zeros_like(self) with self_info
(r'zeros_like\({}\)', {
'suffix': '_info',
'nctype': lambda name: NamedCType(name, BaseCType(typeAndSizeT)),
'expr': lambda name: name, # at save-time
'res': lambda name: name + '_info.zeros()', # at eval-time
}),
# replace self.size(2) with self_size_2
(r'{}.size\((\w+)\)', {
'suffix': lambda m: '_argsize_{}'.format(*m.groups()),
'nctype': lambda name: NamedCType(name, BaseCType(longT)),
}),
# replace self.numel() with self_numel
(r'{}.numel\(\)', {
'suffix': '_numel',
'nctype': lambda name: NamedCType(name, BaseCType(longT)),
}),
# replace to_args_sizes(self) with self_args_sizes
(r'to_args_sizes\({}\)', {
'suffix': '_args_sizes',
'nctype': lambda name: NamedCType(name, VectorCType(VectorCType(BaseCType(longT)))),
}),
# replace to_args_scalartypes(self) with self_args_scalartypes
(r'to_args_scalartypes\({}\)', {
'suffix': '_args_scalartypes',
'nctype': lambda name: NamedCType(name, VectorCType(BaseCType(scalarTypeT))),
}),
# replace TensorGeometry(self) with self_geometry
(r'TensorGeometry\({}\)', {
'suffix': '_geometry',
'nctype': lambda name: NamedCType(name, BaseCType(tensorGeometryT)),
}),
(r'{}.scalar_type\(\)', {
'suffix': '_scalar_type',
'nctype': lambda name: NamedCType(name, BaseCType(scalarTypeT)),
}),
# replace self.dim() with self_dim
(r'{}.dim\(\)', {
'suffix': '_dim',
'nctype': lambda name: NamedCType(name, BaseCType(longT)),
}),
# replace self.strides() with self_strides
(r'{}.strides\(\)', {
'suffix': '_strides',
'nctype': lambda name: NamedCType(name, BaseCType(intArrayRefT)),
'expr': stride_expr,
}),
# replace self.is_conj() with self_conjugate
(r'{}.is_conj\(\)', {
'suffix': '_conjugate',
'nctype': lambda name: NamedCType(name, BaseCType(boolT)),
})
]
# find which arguments need to be saved
saved: List[SavedAttribute] = []
for nctype in nctypes:
name = nctype.name.name if isinstance(nctype.name, SpecialArgName) else nctype.name
# First search the formula for expressions which can be evaluated
# when the autograd Function is created to avoid saving variables
for regex, info in REPLACEMENTS:
def repl(m: Match[str]) -> str:
suffix: str = info['suffix'](m) if callable(info['suffix']) else info['suffix']
expr: str = info['expr'](name) if 'expr' in info else m.group(0)
saved.append(SavedAttribute(
nctype=info['nctype'](name + suffix),
expr=expr,
))
if 'res' in info:
replacement: str = info['res'](name)
return replacement
return name + suffix
formula = re.sub(regex.format(name), repl, formula)
# c10::optional<std::string> types stored in Backward nodes must be
# converted to c10::optional<c10::string_view> before being passed into
# the backward function
if nctype.type == OptionalCType(BaseCType(stringT)):
formula = re.sub(
rf'\b{name}\b',
f'{name}.has_value() ? c10::optional<c10::string_view>({name}.value()) : c10::nullopt',
formula)
# Find any variables which remain in the formula and save them
if re.search(IDENT_REGEX.format(name), formula):
saved.append(SavedAttribute(
nctype=nctype,
expr=name,
))
return formula, tuple(saved)
def _create_op_prefix(name: str) -> str:
"""Takes a native function name converts to a op prefix name.
Note that the "name" parameter must be the native function name
without the optional variant suffix, so "add" instead of
"add.out".
OP names correspond to classes, hence the change to title case.
Example::
>>> _create_op_prefix('add')
'AddBackward'
"""
camel_case = ''.join([p.title() for p in name.split('_')])
return (camel_case + 'Backward').replace('ForwardBackward', 'Backward')
def dedup_vars(vars: Sequence[SavedAttribute]) -> Sequence[SavedAttribute]:
seen: Set[str] = set()
saved: List[SavedAttribute] = []
for var in vars:
name = var.nctype.name.name if isinstance(var.nctype.name, SpecialArgName) else var.nctype.name
if name in seen:
continue
seen.add(name)
saved.append(var)
return saved