forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_annotated_fn_args.py
88 lines (77 loc) · 3.39 KB
/
gen_annotated_fn_args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
"""
For procedural tests needed for __torch_function__, we use this function
to export method names and signatures as needed by the tests in
test/test_overrides.py.
python -m tools.autograd.gen_annotated_fn_args \
aten/src/ATen/native/native_functions.yaml \
$OUTPUT_DIR \
tools/autograd
Where $OUTPUT_DIR is where you would like the files to be
generated. In the full build system, OUTPUT_DIR is
torch/testing/_internal/generated
"""
from collections import defaultdict
import argparse
import os
import textwrap
from typing import Dict, List, Any
from tools.codegen.gen import parse_native_yaml
from tools.codegen.utils import FileManager
from tools.codegen.context import with_native_function
from tools.codegen.model import BaseOperatorName, NativeFunction
import tools.codegen.api.python as python
from .gen_python_functions import should_generate_py_binding, is_py_torch_function, \
is_py_nn_function, is_py_linalg_function, is_py_variable_method, is_py_special_function, \
is_py_fft_function
def gen_annotated(native_yaml_path: str, out: str, autograd_dir: str) -> None:
native_functions = parse_native_yaml(native_yaml_path).native_functions
mappings = (
(is_py_torch_function, 'torch._C._VariableFunctions'),
(is_py_nn_function, 'torch._C._nn'),
(is_py_linalg_function, 'torch._C._linalg'),
(is_py_special_function, 'torch._C._special'),
(is_py_fft_function, 'torch._C._fft'),
(is_py_variable_method, 'torch.Tensor'),
)
annotated_args: List[str] = []
for pred, namespace in mappings:
groups: Dict[BaseOperatorName, List[NativeFunction]] = defaultdict(list)
for f in native_functions:
if not should_generate_py_binding(f) or not pred(f):
continue
groups[f.func.name.name].append(f)
for group in groups.values():
for f in group:
annotated_args.append(f'{namespace}.{gen_annotated_args(f)}')
template_path = os.path.join(autograd_dir, 'templates')
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
fm.write_with_template('annotated_fn_args.py', 'annotated_fn_args.py.in', lambda: {
'annotated_args': textwrap.indent('\n'.join(annotated_args), ' '),
})
@with_native_function
def gen_annotated_args(f: NativeFunction) -> str:
out_args: List[Dict[str, Any]] = []
for arg in f.func.arguments.flat_positional:
if arg.default is not None:
continue
out_arg: Dict[str, Any] = {}
out_arg['name'] = arg.name
out_arg['simple_type'] = python.argument_type_str(arg.type, simple_type=True)
size = python.argument_type_size(arg.type)
if size:
out_arg['size'] = size
out_args.append(out_arg)
return f'{f.func.name.name}: {repr(out_args)},'
def main() -> None:
parser = argparse.ArgumentParser(
description='Generate annotated_fn_args script')
parser.add_argument('native_functions', metavar='NATIVE',
help='path to native_functions.yaml')
parser.add_argument('out', metavar='OUT',
help='path to output directory')
parser.add_argument('autograd', metavar='AUTOGRAD',
help='path to template directory')
args = parser.parse_args()
gen_annotated(args.native_functions, args.out, args.autograd)
if __name__ == '__main__':
main()