-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
294 lines (231 loc) · 11.5 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
from __future__ import absolute_import
from __future__ import print_function
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
import sys; sys.path.append('..')
from torch.optim.lr_scheduler import CosineAnnealingLR
from datetime import datetime, timedelta
import time
import numpy as np
from sklearn import metrics
from dataset_uni import get_img_dataloader, get_ts_dataloader
from dataset_multi import get_multi_dataloader
from models.uni_modal import CT_Encoder, TS_Encoder, Uni_Pred_CT
from models.mutli_modal import TNformer_MP
class Trainer():
def __init__(self, config):
self.config = config
self.ct_batch_size = self.config["train"]["ct_batch_size"]
self.ts_batch_size = self.config["train"]["ts_batch_size"]
self.ct_epoch = self.config["train"]["ct_epoch"]
self.ts_epoch = self.config["train"]["ts_epoch"]
self.multi_epoch = self.config["train"]["multi_epoch"]
self.uni_lr_ct = self.config["train"]["uni_lr_ct"]
self.uni_lr_ts = self.config["train"]["uni_lr_ts"]
self.device = self.config["train"]["device"]
self.ct_dim = self.config["model"]["ct_dim"]
self.ts_dim = self.config["model"]["ts_dim"]
self.hid_dim = self.config["model"]["hid_dim"]
self.time_start = time.time()
self.time_end = time.time()
self.start_epoch = 1
self.patience = 0
self.ct_encoder = CT_Encoder(self.ct_dim).to(self.device)
self.ts_encoder = TS_Encoder(self.ts_dim).to(self.device)
self.ct_pred_layer = Uni_Pred_CT(self.ct_dim).to(self.device)
self.ts_pred_layer = nn.Linear(self.ts_dim, 1).to(self.device)
self.fusion_model = TNformer_MP(self.ct_dim, self.ts_dim, self.hid_dim).to(self.device)
self.bce_loss = nn.BCEWithLogitsLoss()
def get_ct_dataset(self):
train_loader, val_loader, test_loader = get_img_dataloader(self.config["train"]["ct_batch_size"])
return train_loader, val_loader, test_loader
def get_ts_dataset(self):
train_loader, val_loader, test_loader = get_ts_dataloader(self.config["train"]["ts_batch_size"])
return train_loader, val_loader, test_loader
def get_multimodal_dataset(self):
train_loader_pair, val_loader_pair, test_loader_pair, train_loader_miss, val_loader_miss, test_loader_miss = get_multi_dataloader(self.config["train"]["multi_batch_size"], self.config["train"]["ts_batch_size"])
return train_loader_pair, val_loader_pair, test_loader_pair, train_loader_miss, val_loader_miss, test_loader_miss
def process_data(self, batch):
for key in batch.keys():
if isinstance(batch[key], torch.Tensor):
batch[key] = batch[key].to(self.device)
return batch
def uni_modal_train_ct(self):
train_loader, val_loader, test_loader = self.get_ct_dataset()
optimizer = optim.SGD([self.ct_encoder.parameters(),self.ct_pred_layer.parameters()], lr=self.uni_lr_ct)
lr_scheduler = CosineAnnealingLR(optimizer, T_max=self.ct_epoch, verbose=True)
for epoch in range(self.ct_epoch):
self.ct_encoder.train()
for batch in train_loader:
optimizer.zero_grad()
batch = self.process_data(batch)
y = batch["y"]
ct_emb = self.ct_encoder(batch)
pred = self.ct_pred_layer(batch, ct_emb)
loss = self.bce_loss(pred, y)
loss.backward()
optimizer.step()
lr_scheduler.step()
self.ct_encoder.eval()
self.uni_validate_ct(val_loader, epoch)
print("CT training done")
self.uni_validate_ct(test_loader, epoch)
def uni_validate_ct(self, val_loader, epoch=-1):
all_pred = []
all_y = []
for batch in val_loader:
batch = self.process_data(batch)
y = batch["y"]
ct_emb = self.ct_encoder(batch)
pred = self.ct_pred_layer(batch, ct_emb)
pred = torch.sigmoid(pred)
all_pred.append(pred)
all_y.append(y)
all_pred = torch.cat(all_pred, dim=0).cpu().detach().numpy()
all_y = torch.cat(all_y, dim=0).cpu().detach().numpy()
auroc = metrics.roc_auc_score(all_y, all_pred)
auprc = metrics.average_precision_score(all_y, all_pred)
print(f"Epoch {epoch} AUROC: {auroc} AUPRC: {auprc}")
return auroc, auprc
def uni_modal_train_ts(self):
train_loader, val_loader, test_loader = self.get_ts_dataset()
optimizer = optim.Adam([self.ts_encoder.parameters(),self.ts_pred_layer.parameters()], lr=self.uni_lr_ts)
lr_scheduler = CosineAnnealingLR(optimizer, T_max=self.ts_epoch, verbose=True)
for epoch in range(self.ct_epoch):
self.ct_encoder.train()
for batch in train_loader:
optimizer.zero_grad()
batch = self.process_data(batch)
y = batch["y"]
ts_emb = self.ts_encoder(batch)
ts_emb = torch.mean(ts_emb, dim=1)
pred = self.ts_pred_layer(ts_emb)
loss = self.bce_loss(pred, y)
loss.backward()
optimizer.step()
lr_scheduler.step()
self.ts_encoder.eval()
self.uni_validate_ts(val_loader, epoch)
print("TS training done")
self.uni_validate_ts(test_loader, epoch)
def uni_validate_ts(self, val_loader, epoch=-1):
all_pred = []
all_y = []
for batch in val_loader:
batch = self.process_data(batch)
y = batch["y"]
ts_emb = self.ts_encoder(batch)
ts_emb = torch.mean(ts_emb, dim=1)
pred = self.ts_pred_layer(ts_emb)
pred = torch.sigmoid(pred)
all_pred.append(pred)
all_y.append(y)
all_pred = torch.cat(all_pred, dim=0).cpu().detach().numpy()
all_y = torch.cat(all_y, dim=0).cpu().detach().numpy()
auroc = metrics.roc_auc_score(all_y, all_pred)
auprc = metrics.average_precision_score(all_y, all_pred)
print(f"Epoch {epoch} AUROC: {auroc} AUPRC: {auprc}")
return auroc, auprc
def multi_modal_train(self):
train_loader_pair, val_loader_pair, test_loader_pair, train_loader_miss, val_loader_miss, test_loader_miss = self.get_multimodal_dataset()
optimizer = optim.Adam([{"params": self.ts_encoder.parameters(), "lr": 0.0001},
{"params": self.ct_encoder.parameters(), "lr": 0.0001},
{"params": self.fusion_model.parameters(), "lr": 0.0001}])
lr_scheduler = CosineAnnealingLR(optimizer, T_max=self.multi_epoch, verbose=True)
for epoch in range(self.multi_epoch):
self.ct_encoder.train()
self.ts_encoder.train()
self.fusion_model.train()
num = min(len(train_loader_pair),len(train_loader_miss))
for _ in range(num):
optimizer.zero_grad()
# ---- multi-modal training ----
batch_pair = next(train_loader_pair)
batch_pair = self.process_data(batch_pair)
y = batch_pair["y"]
ct_emb = self.ct_encoder(batch_pair)
ts_emb = self.ts_encoder(batch_pair)
pred = self.fusion_model(batch_pair, ct_emb, ts_emb)
loss_pair = self.bce_loss(pred, y)
# ---- missing-modal training ----
batch_miss = next(train_loader_miss)
batch_miss = self.process_data(batch_miss)
y = batch_miss["y"]
ts_emb = self.ts_encoder(batch_miss)
pred = self.fusion_model(batch_miss, None, ts_emb)
loss_miss = self.bce_loss(pred, y)
loss = loss_pair + loss_miss
loss.backward()
optimizer.step()
lr_scheduler.step()
self.ts_encoder.eval()
self.ct_encoder.eval()
self.fusion_model.eval()
self.multi_validate(val_loader_pair, val_loader_miss, epoch)
print("Multi-modal training done")
self.multi_validate(test_loader_pair, test_loader_miss, epoch)
def multi_validate(self, val_loader_pair, val_loader_miss, epoch=-1):
all_pred = []
all_y = []
all_pred_pair = []
all_y_pair = []
all_pred_miss = []
all_y_miss = []
for batch in val_loader_pair:
y = batch["y"]
batch = self.process_data(batch)
ts_emb = self.ts_encoder(batch)
ct_emb = self.ct_encoder(batch)
pred = self.fusion_model(batch, ct_emb, ts_emb)
pred = torch.sigmoid(pred)
all_pred_pair.append(pred)
all_y_pair.append(y)
all_pred.append(pred)
all_y.append(y)
for batch in val_loader_miss:
batch = self.process_data(batch)
y = batch["y"]
ts_emb = self.ts_encoder(batch)
pred = self.fusion_model(batch, None, ts_emb)
pred = torch.sigmoid(pred)
all_pred_miss.append(pred)
all_y_miss.append(y)
all_pred.append(pred)
all_y.append(y)
all_pred = torch.cat(all_pred, dim=0).cpu().detach().numpy()
all_y = torch.cat(all_y, dim=0).cpu().detach().numpy()
all_pred_pair = torch.cat(all_pred_pair, dim=0).cpu().detach().numpy()
all_y_pair = torch.cat(all_y_pair, dim=0).cpu().detach().numpy()
all_pred_miss = torch.cat(all_pred_miss, dim=0).cpu().detach().numpy()
all_y_miss = torch.cat(all_y_miss, dim=0).cpu().detach().numpy()
auroc_all = metrics.roc_auc_score(all_y, all_pred)
auprc_all = metrics.average_precision_score(all_y, all_pred)
auroc_pair = metrics.roc_auc_score(all_y_pair, all_pred_pair)
auprc_pair = metrics.average_precision_score(all_y_pair, all_pred_pair)
auroc_miss = metrics.roc_auc_score(all_y_miss, all_pred_miss)
auprc_miss = metrics.average_precision_score(all_y_miss, all_pred_miss)
print(f"Epoch {epoch} AUROC_ALL: {auroc_all} AUPRC_ALL: {auprc_all}")
print(f"Epoch {epoch} AUROC_PAIR: {auroc_pair} AUPRC_PAIR: {auprc_pair}")
print(f"Epoch {epoch} AUROC_MISS: {auroc_miss} AUPRC_MISS: {auprc_miss}")
return auroc_all, auprc_all, auroc_pair, auprc_pair, auroc_miss, auprc_miss
def dual_cutoff(self, y_true_val, y_pred_val):
fpr, tpr, thresholds = metrics.roc_curve(y_true_val, y_pred_val)
sensitivity = tpr
specification = 1 - fpr
lower_cutoff = None
upper_cutoff = None
index1 = np.argwhere(sensitivity > 0.9)
index2 = np.argwhere(specification <= 0.9)
if len(index1) != 0:
lower_cutoff = thresholds[index1[0, 0]]
if len(index2) != 0:
if index2[0, 0]>0:
index =index2[0, 0] - 1
upper_cutoff = thresholds[index]
else:
upper_cutoff = thresholds[index2[0, 0]]
return lower_cutoff, upper_cutoff