forked from andrewabeles/drug-labels
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcleaning.py
48 lines (36 loc) · 1.33 KB
/
cleaning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from string import punctuation
import re
import nltk
from nltk.corpus import stopwords
### VARIABLES ###
# punctuation
punct_set = set(punctuation)
punct_set.remove('/') # keep '/' to use for tokenization
# numbers
numbers_pattern = re.compile(r'[0-9]+')
# tokenization
token_pattern = re.compile(r'[\s/]') # split on whitespace and '/'
# stopwords
nltk.download('stopwords')
stopwords_set = set(stopwords.words('english'))
additional_stopwords = ['dosage', 'administration', 'directions', '•']
for sw in additional_stopwords:
stopwords_set.add(sw)
### FUNCTIONS ###
def remove_punctuation(text):
return "".join([char for char in text if char not in punct_set])
def remove_numbers(text):
return re.sub(numbers_pattern, '', text)
def tokenize(text):
tokens = re.split(token_pattern, text)
tokens = [t for t in tokens if t != ''] # remove blank tokens that used to be '/'
return tokens
def remove_stopwords(tokens):
return [t for t in tokens if t not in stopwords_set]
def prepare(text, pipeline=[str.lower, remove_punctuation, remove_numbers, tokenize, remove_stopwords]):
"""Pass a string through a text processing pipeline."""
for transform in pipeline:
text = transform(text)
return text
def get_document_features(tokens, featureset):
return {t: t in featureset for t in tokens}