-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathcorrector_tutorial.py
173 lines (147 loc) · 6.8 KB
/
corrector_tutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import torch
import os
import argparse
import pandas as pd
import numpy as np
import random
from src.preprocess import standardize, train_valid_test_split, remove_long_sequences
from src.invalidSMILES import get_invalid_smiles
from src.modelling import initialize_model, train_model, correct_SMILES
def ArgParser():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-r', '--folder_raw', type=str, default='RawData/',
help="Directory containing input files data_source & gdb8.csv")
parser.add_argument('-o', '--folder_out', type=str, default='Data/',
help="Directory for saving output files")
parser.add_argument('-d', '--data_source', type=str, default='PAPYRUS.csv',
help="data source to base synthetic errors on")
parser.add_argument('-es', '--error_source', type=str, default='Data/papyrus_rnn_S.csv',
help="file with invalid SMILES to fix")
parser.add_argument('-ran', '--random_state', type=int, default=42, help="Seed for the random state")
parser.add_argument('-i', '--input', type=str, default='dataset',
help="tsv file name that contains SMILES, target accession & corresponding data")
parser.add_argument('-th', '--threshold', type=int, default=200,
help="maximum sequence length")
parser.add_argument('-n', '--num_errors', type=int, default=1,
help="Batch size")
parser.add_argument('-type', '--invalid_type', type=str, default='all',
help='type of error to introduce, ["all", "exists", "par", "permut", "ring", "syntax", "valence", "arom"] for num_errors = 1 & "multiple" for num_errors > 1')
parser.add_argument('-train', '--training', action='store_true',
help='If on, corrector is trained')
parser.add_argument('-fix', '--fixing', action='store_true',
help='If on, model is loaded and used for fixing SMILES from error_source')
parser.add_argument('-gpu', '--gpu', type=str, default='1',
help="GPU to use")
parser.add_argument('-bs', '--batch_size', type=int, default=16,
help="Batch size")
parser.add_argument('-l', '--layers', type=int, default=3,
help="Batch size")
parser.add_argument('-e', '--epochs', type=int, default=20,
help="Number of epochs")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = ArgParser()
folder_raw = args.folder_raw
folder_out = args.folder_out
data_source = args.data_source
error_source = args.error_source
threshold =args.threshold
invalid_type = args.invalid_type
num_errors = args.num_errors
# set random seed, used for error generation & initiation transformer
SEED = args.random_state
random.seed(SEED)
# create standardized dataset if not already present
if os.path.exists(
f"{folder_out}{data_source.split('.')[0]}_{threshold}_standardized.csv"
):
# Load dataset of standardized SMILES & of fragments
df = pd.read_csv(
f"{folder_out}{data_source.split('.')[0]}_{threshold}_standardized.csv",
usecols=["STD_SMILES"],
header=0,
index_col=None,
)
else:
# standardize
df = standardize(folder_raw, data_source)
# remove long sequences
df = remove_long_sequences(df,
subset="STD_SMILES",
threshold=threshold)
# save standardized dataframe
df.to_csv(
f"Data/{data_source.split('.')[0]}_{threshold}_standardized.csv",
index=False)
df = df['STD_SMILES']
data_source = f"{data_source.split('.')[0]}_{threshold}"
# create synthetic invalid SMILES if not already present
if os.path.exists(
f"{folder_out}errors/{data_source}_{invalid_type}_{num_errors}_errors.csv"
):
# Load dataset of invalid and valid SMILES
df = pd.read_csv(
f"{folder_out}errors/{data_source}_{invalid_type}_{num_errors}_errors.csv",
usecols=["STD_SMILES", "ERROR"],
header=0,
index_col=None,
)
else:
df_frag = pd.read_csv(f"{folder_raw}gbd_8.csv",
names=["FRAGMENT"],
usecols=[0],
header=0).dropna()
# takes few minutes when using ray on ~24 CPUs
df = get_invalid_smiles(df, df_frag, SEED, invalid_type, num_errors)
# remove long sequences
df = remove_long_sequences(df,
subset="STD_SMILES",
threshold=threshold)
df = remove_long_sequences(df, subset="ERROR", threshold=threshold)
if not os.path.exists(f"{folder_out}errors"):
os.makedirs(f"{folder_out}errors")
df.to_csv(
f"{folder_out}errors/{data_source}_{invalid_type}_{num_errors}_errors.csv",
index=False)
print(df)
if not os.path.exists(
f"{folder_out}errors/split/{data_source}_{invalid_type}_{num_errors}_errors_train.csv"
):
# for splitting the data and turning it into a torchtext dataset
train, valid, _ = train_valid_test_split(df, SEED=SEED)
if not os.path.exists(f"{folder_out}errors/split"):
os.makedirs(f"{folder_out}errors/split")
train.to_csv(
f"{folder_out}errors/split/{data_source}_{invalid_type}_{num_errors}_errors_train.csv",
index=False)
valid.to_csv(
f"{folder_out}errors/split/{data_source}_{invalid_type}_{num_errors}_errors_dev.csv",
index=False)
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
# define this in test.py
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
#device = torch.device('cpu')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model, out, SRC = initialize_model(
folder_out,
data_source,
error_source,
device,
threshold=threshold,
epochs=args.epochs,
layers=args.layers,
batch_size=args.batch_size,
invalid_type=invalid_type,
num_errors=num_errors,
)
if args.training:
model = train_model(model, out, False)
elif args.fixing:
print(f"Fixing {error_source.split('/')[-1].split('.')[0]}")
valids, df_output = correct_SMILES(model, out, error_source, device,
SRC)
df_output.to_csv(
f"generated/{out.split('/')[-1]}_{error_source.split('/')[-1].split('.')[0]}_fixed.csv",
index=False)