title | summary |
---|---|
用 EXPLAIN 查看带聚合计算的 SQL 执行计划 |
了解 TiDB 中 EXPLAIN 语句返回的执行计划信息。 |
SQL 优化器会选择以下任一算子实现数据聚合:
- Hash Aggregation
- Stream Aggregation
为了提高查询效率,数据聚合在 Coprocessor 层和 TiDB 层均会执行。现有示例如下:
{{< copyable "sql" >}}
CREATE TABLE t1 (id INT NOT NULL PRIMARY KEY auto_increment, pad1 BLOB, pad2 BLOB, pad3 BLOB);
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM dual;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
SELECT SLEEP(1);
ANALYZE TABLE t1;
以上示例创建表格 t1
并插入数据后,再执行 SHOW TABLE REGIONS
语句。从以下 SHOW TABLE REGIONS
的执行结果可知,表 t1
被切分为多个 Region:
{{< copyable "sql" >}}
SHOW TABLE t1 REGIONS;
+-----------+--------------+--------------+-----------+-----------------+-------+------------+---------------+------------+----------------------+------------------+
| REGION_ID | START_KEY | END_KEY | LEADER_ID | LEADER_STORE_ID | PEERS | SCATTERING | WRITTEN_BYTES | READ_BYTES | APPROXIMATE_SIZE(MB) | APPROXIMATE_KEYS |
+-----------+--------------+--------------+-----------+-----------------+-------+------------+---------------+------------+----------------------+------------------+
| 64 | t_64_ | t_64_r_31766 | 65 | 1 | 65 | 0 | 1325 | 102033520 | 98 | 52797 |
| 66 | t_64_r_31766 | t_64_r_63531 | 67 | 1 | 67 | 0 | 1325 | 72522521 | 104 | 78495 |
| 68 | t_64_r_63531 | t_64_r_95296 | 69 | 1 | 69 | 0 | 1325 | 0 | 104 | 95433 |
| 2 | t_64_r_95296 | | 3 | 1 | 3 | 0 | 1501 | 0 | 81 | 63211 |
+-----------+--------------+--------------+-----------+-----------------+-------+------------+---------------+------------+----------------------+------------------+
4 rows in set (0.00 sec)
使用 EXPLAIN
查看以下聚合语句的执行计划。可以看到 └─StreamAgg_8
算子先执行在 TiKV 内每个 Region 上,然后 TiKV 的每个 Region 会返回一行数据给 TiDB,TiDB 在 StreamAgg_16
算子上对每个 Region 返回的数据进行聚合:
{{< copyable "sql" >}}
EXPLAIN SELECT COUNT(*) FROM t1;
+----------------------------+-----------+-----------+---------------+---------------------------------+
| id | estRows | task | access object | operator info |
+----------------------------+-----------+-----------+---------------+---------------------------------+
| StreamAgg_16 | 1.00 | root | | funcs:count(Column#7)->Column#5 |
| └─TableReader_17 | 1.00 | root | | data:StreamAgg_8 |
| └─StreamAgg_8 | 1.00 | cop[tikv] | | funcs:count(1)->Column#7 |
| └─TableFullScan_15 | 242020.00 | cop[tikv] | table:t1 | keep order:false |
+----------------------------+-----------+-----------+---------------+---------------------------------+
4 rows in set (0.00 sec)
同样,通过执行 EXPLAIN ANALYZE
语句可知,actRows
与 SHOW TABLE REGIONS
返回结果中的 Region 数匹配,这是因为执行使用了 TableFullScan
全表扫并且没有二级索引:
EXPLAIN ANALYZE SELECT COUNT(*) FROM t1;
+----------------------------+-----------+---------+-----------+---------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+---------------------------------+-----------+------+
| id | estRows | actRows | task | access object | execution info | operator info | memory | disk |
+----------------------------+-----------+---------+-----------+---------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+---------------------------------+-----------+------+
| StreamAgg_16 | 1.00 | 1 | root | | time:12.609575ms, loops:2 | funcs:count(Column#7)->Column#5 | 372 Bytes | N/A |
| └─TableReader_17 | 1.00 | 4 | root | | time:12.605155ms, loops:2, cop_task: {num: 4, max: 12.538245ms, min: 9.256838ms, avg: 10.895114ms, p95: 12.538245ms, max_proc_keys: 31765, p95_proc_keys: 31765, tot_proc: 48ms, rpc_num: 4, rpc_time: 43.530707ms, copr_cache_hit_ratio: 0.00} | data:StreamAgg_8 | 293 Bytes | N/A |
| └─StreamAgg_8 | 1.00 | 4 | cop[tikv] | | proc max:12ms, min:12ms, p80:12ms, p95:12ms, iters:122, tasks:4 | funcs:count(1)->Column#7 | N/A | N/A |
| └─TableFullScan_15 | 242020.00 | 121010 | cop[tikv] | table:t1 | proc max:12ms, min:12ms, p80:12ms, p95:12ms, iters:122, tasks:4 | keep order:false | N/A | N/A |
+----------------------------+-----------+---------+-----------+---------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+---------------------------------+-----------+------+
4 rows in set (0.01 sec)
Hash Aggregation 算法在执行聚合时使用 Hash 表存储中间结果。此算法采用多线程并发优化,执行速度快,但与 Stream Aggregation 算法相比会消耗较多内存。
下面是一个使用 Hash Aggregation(即 HashAgg
算子)的例子:
{{< copyable "sql" >}}
EXPLAIN SELECT /*+ HASH_AGG() */ count(*) FROM t1;
+---------------------------+-----------+-----------+---------------+---------------------------------+
| id | estRows | task | access object | operator info |
+---------------------------+-----------+-----------+---------------+---------------------------------+
| HashAgg_9 | 1.00 | root | | funcs:count(Column#6)->Column#5 |
| └─TableReader_10 | 1.00 | root | | data:HashAgg_5 |
| └─HashAgg_5 | 1.00 | cop[tikv] | | funcs:count(1)->Column#6 |
| └─TableFullScan_8 | 242020.00 | cop[tikv] | table:t1 | keep order:false |
+---------------------------+-----------+-----------+---------------+---------------------------------+
4 rows in set (0.00 sec)
operator info
列显示,用于聚合数据的 Hash 函数为 funcs:count(1)->Column#6
。
Stream Aggregation 算法通常会比 Hash Aggregation 算法占用更少的内存。但是此算法要求数据按顺序发送,以便对依次到达的值实现流式数据聚合。
下面是一个使用 Stream Aggregation 的例子:
{{< copyable "sql" >}}
CREATE TABLE t2 (id INT NOT NULL PRIMARY KEY, col1 INT NOT NULL);
INSERT INTO t2 VALUES (1, 9),(2, 3),(3,1),(4,8),(6,3);
EXPLAIN SELECT /*+ STREAM_AGG() */ col1, count(*) FROM t2 GROUP BY col1;
Query OK, 0 rows affected (0.11 sec)
Query OK, 5 rows affected (0.01 sec)
Records: 5 Duplicates: 0 Warnings: 0
+------------------------------+----------+-----------+---------------+---------------------------------------------------------------------------------------------+
| id | estRows | task | access object | operator info |
+------------------------------+----------+-----------+---------------+---------------------------------------------------------------------------------------------+
| Projection_4 | 8000.00 | root | | test.t2.col1, Column#3 |
| └─StreamAgg_8 | 8000.00 | root | | group by:test.t2.col1, funcs:count(1)->Column#3, funcs:firstrow(test.t2.col1)->test.t2.col1 |
| └─Sort_13 | 10000.00 | root | | test.t2.col1 |
| └─TableReader_12 | 10000.00 | root | | data:TableFullScan_11 |
| └─TableFullScan_11 | 10000.00 | cop[tikv] | table:t2 | keep order:false, stats:pseudo |
+------------------------------+----------+-----------+---------------+---------------------------------------------------------------------------------------------+
5 rows in set (0.00 sec)
以上示例中,可以在 col1
上添加索引来消除 └─Sort_13
算子。添加索引后,TiDB 就可以按顺序读取数据并消除 └─Sort_13
算子。
{{< copyable "sql" >}}
ALTER TABLE t2 ADD INDEX (col1);
EXPLAIN SELECT /*+ STREAM_AGG() */ col1, count(*) FROM t2 GROUP BY col1;
Query OK, 0 rows affected (0.28 sec)
+------------------------------+---------+-----------+----------------------------+----------------------------------------------------------------------------------------------------+
| id | estRows | task | access object | operator info |
+------------------------------+---------+-----------+----------------------------+----------------------------------------------------------------------------------------------------+
| Projection_4 | 4.00 | root | | test.t2.col1, Column#3 |
| └─StreamAgg_14 | 4.00 | root | | group by:test.t2.col1, funcs:count(Column#4)->Column#3, funcs:firstrow(test.t2.col1)->test.t2.col1 |
| └─IndexReader_15 | 4.00 | root | | index:StreamAgg_8 |
| └─StreamAgg_8 | 4.00 | cop[tikv] | | group by:test.t2.col1, funcs:count(1)->Column#4 |
| └─IndexFullScan_13 | 5.00 | cop[tikv] | table:t2, index:col1(col1) | keep order:true, stats:pseudo |
+------------------------------+---------+-----------+----------------------------+----------------------------------------------------------------------------------------------------+
5 rows in set (0.00 sec)