forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
val.py
109 lines (93 loc) · 3.08 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import paddle
import paddleseg
from paddleseg.cvlibs import manager, Config
from paddleseg.utils import get_sys_env, logger
from core import evaluate
from datasets import CityscapesPanoptic
from models import PanopticDeepLab
def parse_args():
parser = argparse.ArgumentParser(description='Model evaluation')
# params of evaluate
parser.add_argument(
"--config", dest="cfg", help="The config file.", default=None, type=str)
parser.add_argument(
'--model_path',
dest='model_path',
help='The path of model for evaluation',
type=str,
default=None)
parser.add_argument(
'--num_workers',
dest='num_workers',
help='Num workers for data loader',
type=int,
default=0)
parser.add_argument(
'--threshold',
dest='threshold',
help='Threshold applied to center heatmap score',
type=float,
default=0.1)
parser.add_argument(
'--nms_kernel',
dest='nms_kernel',
help='NMS max pooling kernel size',
type=int,
default=7)
parser.add_argument(
'--top_k',
dest='top_k',
help='Top k centers to keep',
type=int,
default=200)
return parser.parse_args()
def main(args):
env_info = get_sys_env()
place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
'GPUs used'] else 'cpu'
paddle.set_device(place)
if not args.cfg:
raise RuntimeError('No configuration file specified.')
cfg = Config(args.cfg)
val_dataset = cfg.val_dataset
if val_dataset is None:
raise RuntimeError(
'The verification dataset is not specified in the configuration file.'
)
elif len(val_dataset) == 0:
raise ValueError(
'The length of val_dataset is 0. Please check if your dataset is valid'
)
msg = '\n---------------Config Information---------------\n'
msg += str(cfg)
msg += '------------------------------------------------'
logger.info(msg)
model = cfg.model
if args.model_path:
paddleseg.utils.utils.load_entire_model(model, args.model_path)
logger.info('Loaded trained params of model successfully')
evaluate(
model,
val_dataset,
threshold=args.threshold,
nms_kernel=args.nms_kernel,
top_k=args.top_k,
num_workers=args.num_workers, )
if __name__ == '__main__':
args = parse_args()
main(args)