-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfactorio.txt.yaml
536 lines (502 loc) · 58.8 KB
/
factorio.txt.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
priorities:
0: infrastructure
1: science (generally to keep the factory running)
2: small intermediate
3: medium intermediate
4: large intermediate
Some formulas:
u = pfc/r
f = ur/pc
c = ur/pf
Target production: 100SPM (u = 1.6 / s)
labs: 1SPM --> labs = u / c = 100 / 2.45 = 40 labs
productivity bonus: 1.2 * 40 * 2.45 = 117.5 SPM - bonus = +17.5 SPM
BEGIN
# Sciences
Automation science:
r = 1 gear + 1 copper + 5 sec
c = 3 --> f = 2
ingredients: u = fc/r = 6/5 = 1.2
gears: 2 iron + 0.5 sec
f = 1 --> c = 0.5
iron: u = fc/r = 0.5/0.5 = 1
imports: priority 3
copper: 1.2 / sec
iron: (2 * 1 gear) = 2 / sec
Logistic science:
r = 1 inserter + 1 belt + 6 sec
c = 3.625 (top and sides) --> f = 2
ingredients: u = 1.6 / 1.4 = ~1.2
inserter (no prod): 1 green chip + 1 gear + 1 iron + 0.5 sec
f = 1 --> c = 0.6 --> asm2
ingredients: u = 1.2
transport belt: 1 gear + 1 iron + 0.5 sec
f = 1 --> c = 0.6 --> asm2
ingredients: u = 1.2
gears: 2 iron + 0.5 sec
u = (1.2 * 1 inserter) + (1.2 * 1 transport belt) = 2.4
f = 1 --> c = 0.8
iron: u = fc/r = 0.8/0.5 = 1.7
imports: priority 3
green chips: (1.2 * 1 inserter) = 1.2 / sec
iron: (1 * 1.2 inserter) + (1 * 1.2 transport belt) + (2 * 1.6 gears) = 5.6 / sec
Chemical science:
2r = 1 sulfur + 3 advanced circuits + 2 engine units + 24 sec
u = 1.6/2 packs / recipe = 0.8
c = 5.5 --> f = 3
ingredients: u = 0.8 / 1.4 = 0.6
engine: 1 steel + 1 gear + 2 pipe + 10 sec
u = 0.6 * 2 = 1.2
c = 3, f = 2.85
ingredients: u = 1.2 / 1.4 = 0.85
gear: 2 iron + 0.5 sec
c = 3 --> f = 0.1 (T_T)
ingredients: u = 0.85 / 1.4 = 0.6
pipe: 1 iron + 0.5 sec
u = 0.85 * 2 = 1.7
f = 1 --> c = 0.85
ingredients: u = 1.7
imports: priority 3
sulfur: 0.6 sulfur / sec
red chips: 0.6 * 3 = 1.8 / sec
iron: (2 * 0,6 gear) + (1 * 1.7 pipe) = 2.9 / sec
steel: (1 * 0.85 engine) = 0.85 / sec
Production science:
3r = 30 rails(!) + 1 electric furnace + 1 productivity module + 21 sec
u = 1.6 / 3 pack = 0.53
f = 3 --> c = 2.66
c = 5.5 --> f = 1.45
ingredients: u = 0.53 / 1.4 = 0.38
productivity modules (no prod): 5 green chips + 5 red chips + 15 sec
f = 2 --> c = 2.85 (asm3 w/3 speed = 3.125)
ingredients: u = 0.38
green chips: 5 * 38 = 1.9
red chips: 5 * 0.416 = 1.9
electric furnace (no prod): 10 steel + 10 brick + 5 red chips + 5 sec
f = 1 --> c = 1.9 (asm3 w/2 speed = 2.5)
ingredients: u = 0.38
steel: 0.38 * 10 = 3.8
brick: 0.38 * 10 = 3.8
0.38 * 5 = 1.9
imports: priority 3
rails: (0.38 * 30 rails) = 11.4 / sec
green chips: (5 * 0.38 productivity module) = 1.9 / sec
red chips: (5 * 0.38 productivity modules) + (5 * 0.38 electric furnaces) = 3.8 / sec
steel: (10 * 0.38 electric furnaces) = 3.8 / sec
brick: (10 * 0.38 electric furnaces) = 3.8 / sec
Utility science:
3r = 2 processing units + 1 robot frame + 3 low density structures + 21 sec
u = 1.6 / 3 pack = 0.53
c = 5.5 --> f = 1.45
ingredients: u = 0.53 / 1.4 = 0.38
robot frames: 1 steel + 2 battery + 3 green chips + 1 electric engine + 20 sec
c = 3 --> f = 1.8
ingredients: u = 0.38 / 1.4 = 0.28
electric engine: 2 green chips + 1 engine + 20 lube + 10 sec
c = 3 --> f = 1.26
ingredients: u = 0.28 / 1.4 = 0.2
engine: 1 steel + 1 gear + 2 pipe + 10 sec
c = 3 --> f = 0.5
ingredients: u = 0.2 / 1.4 = 0.15
gear: 2 iron + 0.5 sec
f = 1 --> c = 0.05
ingredients: u = 0.15 / 1.4 = 0.1
pipe (no prod): 1 iron + 0.5 sec
f = 1 --> c = 0.05
ingredients: u = 0.15
imports (two trains): priority 3
steel: (1 * 0.28 robot frame) + (1 * 0.15 engine) = 0.43 / sec
green chips: (3 * 0.28 robot frame) + (2 * 0.2 electric engine) = 1.25 / sec
iron: (2 * 0.1 gear) + (1 * 0.15 pipe) = 0.35
lube: (20 * 0.2 electric engine) = 4 / sec
purple chips: (2 * 0.38 yellow science) = 0.76 / sec
LDS: (3 * 0.38 yellow science) = 1.15 / sec
battery: (2 * 0.28 robot frame) = .56 / sec
Space science:
1000r = 100 rocket parts + 1 satellite + 40 sec (animation)
ingredients: u = 1.6 / 1000 packs per launch = 0.0016
rocket parts: 10 rocket control units + 10 LDS + 10 rocket fuel + 3 sec
f = 1 -> c < 0.4 (asm3 w/o beacons)
ingredients: u = 0.0016 * 100 / 1.4 = 0.12
rocket control units: 1 processing unit + 1 speed module I + 30 sec
c = 5.5 --> f = 4.67
ingredients: u = 0.12 * 10 / 1.4 = 0.86
speed module I: 5 green chips + 5 red chips + 15 sec
c = 3 --> f = 3
satellite: 100 purple chip + 100 LDS + 50 rocket fuel + 100 solar panel + 100 accumulator + 5 radar + 5 sec
f = 1 --> c = 0.008
ingredients: u = 0.0016
radar: 10 iron + 5 gear + 5 green chips + 0.5 sec
f = 1 --> c = ~0
ingredients: u = 5 * 0.0016 = 0.008
gear: 2 iron + 0.5 sec
ingredients: 5 * 0.008 / 1.4 = 0.028
f = 1 --> c = 0.014
imports (two trains): priority 3
iron: (10 * 0.008 radar) + (2 * 0.028 gear) = 0.136 / sec
green chips: (5 * 0.86 speed module I) + (5 * 0.008 radar) = 4.34 / sec
red chips: (5 * 0.86 speed module I) = 4.3 / sec
purple chips: (1 * 0.86 rocket control units) + (100 * 0.0016 satellite) = 1 / sec
LDS: (10 * 0.12 rocket parts) + (100 * 0.0016 satellite) = 1.36 / sec
rocket fuel: (10 * 0.12 rocket parts) + (50 * 0.0016 satellite) = 1.28 / sec
solar panel: (100 * 0.0016 satellite) = 0.16 / sec
accumulator: (100 * 0.0016 satellite) = 0.16 / sec
labs:
100SPM --> 40 labs
imports: priority 1
automation science
Logistic science
Chemical science
Production science
Utility science
Space science
# TODO
# Intermediates
LDS:
# Utility science + Space science = 1.15 + 1.36 = 2.5 / sec
u = 2.5
r = 20 copper + 2 steel + 5 plastic + 20 sec
c = 5.5 --> f = 6.5
ingredients: u = 2.5 / 1.4 = 1.78
imports: priority 3
copper: 20 * 1.78 = 35.6 / sec
steel: 2 * 1.78 = 3.56 / sec
plastic: 5 * 1.78 = 8.9 / sec
# Dedicated solar panel facility
solar farm:
# Space science + expansion
production: u = 0.2
solar panel:
r = 5 copper plate + 5 steel plate + 15 green chip + 10 sec
f = 1 --> c = 2
ingredients: u = 0.2
copper plate: 5 * 0.2 = 1 / sec
steel plate: 5 * 0.2 = 1 / sec
green chip: 15 * 0.2 = 3 / sec
accumulator:
r = 2 iron + 5 battery + 10 sec
f = 1 --> c = 2
ingredients: u = 0.2
iron: 2 * 0.2 = 0.4 / sec
battery: 5 * 0.2 = 1 / sec
imports: priority 2
iron: 0.4 / sec (24 / min)
copper: 1 / sec (60 / min)
steel: 1 / sec (60 / min)
battery: 1 / sec (60 / min)
green chips: 3 / sec (180 / min)
battery:
# solar farm + utility science
imports: priority 2
iron
copper
sulfuric acid
# Dedicated rails facility
infrastructure:
products:
# 11.4 + expansion = 15 / second
rails
landfill
cliff explosives
ingredients:
rails (no prod): 1 stone + 1 iron rod + 1 steel + 0.5 sec = 2 rail
c = 3.75 --> f = 1
ingredients: u = 7.5
stone: 7.5 / sec
steel: 7.5 / sec
iron rod: 1 iron + 0.5 sec = 2 iron rod
c = 3 --> f = 1
ingredients: u = fc/r = 8.4
iron: 8.4 / sec
landfill (no prod): 20 stone + 0.5 sec
ingredients: u = 1
stone: 10 / sec
cliff explosives (no prod): 10 explosives + 1 empty barrel + 1 grenade + 8 sec
ingredients: stockpile, f = 1
explosives: 1 coal + 1 sulfur + 10 water + 4 sec
ingredients:
coal: stockpile
sulfur: stockpile
water: stockpile
imports: priority 0
stone: rail + landfill = (7.5 / sec) + (10 / sec) = 17.5 / sec ()
iron: rail = 8.4 / sec
steel: rail = 7.5 / sec
coal: stockpile
sulfur: stockpile
water: stockpile
purple chips:
# Expansion + Space science + Utility science = 1 + 0.76 = 2 / sec
r = 20 green chip + 2 red chip + 5 sulfuric acid + 10 sec
f = 3 assembling machines --> c = 4.76 crafting speed
ingredients: u = 2 / sec
imports: priority 2
sulfuric acid: 7.14 / sec
green chips: 28.57 / sec
red chips: 2.85 / sec
red chips:
# expansion + chemical science + production science + purple chips + space science
recipe: 2 plastic + 4 copper cable + 2 green chip + 6 sec
u = 1.8 + 3.8 + 4.3 + 2.85 = 12.75
c = 5.5 --> f = 10
ingredients: u = 12.75/1.4 = 9.1
plastic: 2 * 9.1 = 18.2 / sec
green chip: 2 * 9.1 = 18.2 / sec
copper cable: 4 * 9.1 = 36.4
2r = 1 copper plate + 0.5 sec
f = 2 --> c = 3.25
ingredients: u = (36.4/2)/1.4 = 13
copper plate: 13 / sec
imports: priority 3
plastic: 18.2 / sec
copper: 13 / sec
green chips: 18.2 / sec
green chips:
# Advanced circuit + Processing unit + expansion + Solar farm
# + Utility science + Logistic science + production science + Space science
# = 18.2 + 28.57 + 3 + 1.25 + 1.2 + 1.9 + 4.34
u = 58.46
r = 1 iron + 3 copper cable + 0.5 sec
c = 5.5 --> f = 4
ingredients: u' = u/1.4 = 58.46/1.4 = 41.76
iron: 41.76 / sec
copper cable:
2r = 1 copper + 0.5 sec
ingredients: u = (41.76/2)/1.4 = 15
copper: 15 / sec
imports: priority 4
iron: 41.76 / sec (2505 / min)
copper: 15 / sec (900 / min)
Coal liquefaction:
# Needs to take care of all plastic needs -- LDS + Red chip
production:
prod = 1.3 for all recipes
plastic:
1 coal + 20 petroleum + 1 sec = 2 plastic
r = 0.5 sec
# LDS (8.9 / sec) + red chips (18.2 / sec) = 27.1
u = 28
c = 4.55 --> f = 3
ingredients: u = 28/1.3 = 21.5
coal: 21.5 / sec
petroleum: 20 * 21.5 = 430 / sec
petroleum (coal liquefaction) -- 1 oil refinery:
10 coal + 25 heavy oil + 50 steam + 5 sec = 10 petroleum + 90 heavy oil + 20 light oil
c = 8.55 --> t = r/c = 0.5 sec per recipe.
products: u = 1.3fc/r = 2.22
heavy oil: (2.22 * 90) - (1.71 * 25) = 157 heavy oil / sec
light oil: 2.22 * 20 * 44.4 light oil / sec
petroleum: 2.22 * 10 = 22.2 petroleum / sec
ingredients: u = fc/r = 1.71
coal: 10 * 1.71 = 17.1
heavy oil: 25 * 1.71 = 42.75
steam:
r = 1 water + 1/60 sec
c = 1 --> f = 2
ingredients: u = 1.71 * 50 = 85.5
water: 85.5 / sec
heavy oil cracking:
30 water + 40 heavy oil + 2 sec = 30 light oil
We need to consume 157 heavy oil / sec. That's u = 4
f = 2 --> c = 4. Do not count the prod bonus here
products: Count the prod bonus here instead
light oil: 30 * 4 * 1.3 = 156 light oil / sec
ingredients: u = 4
water: 30 * 4 = 120 / sec
heavy oil: 40 * 4 = 160 / sec
light oil cracking:
30 water + 30 light oil + 2 sec = 20 petroleum
We need to consume (44.4 + 156) = 200 light oil / sec. That's u = 6.66
c = 4.55 --> f = 3. Do not count the prod bonus here
products: Count the prod bonus here instead
petroleum: 20 * 6.66 * 1.3 = 173.16 petroleum / sec
ingredients: u = 6.66
water: 30 * 6.66 = 200 / sec
light oil: 30 * 6.66 = 200 / sec
Net petroleum for f = 1 coal liquefaction: 173.16 + 22.2 = 195 / sec
For u = 430 --> f = 3
imports: priority 3
coal: 3 * (17.1 [coal liquefaction]) + 21.5 [plastic] = 72.8 / sec (2.316 / min)
water: 85.5 [steam] + 120 [heavy oil cracking] + 200 [light oil cracking] = 405 / sec (24,330 / min)
# Raw materials
Oil processing:
# plastic are being handled in coal liquefaction
exports (2 export stations: 1 solids, 1 liquids
# solid fuel (rocket fuel) (solid station, 1/2 bottom row)
# sulfur (solid station, 1/2 bottom row)
# sulfuric acid (liquids station #1)
lube (liquids station #2)
light oil
# petroleum
# water
imports: priority 3
iron
coal
crude oil
water
iron:
imports: priority 4
copper:
imports: priority 4
steel:
imports: priority 4
# Don't need to analyze these, one-time only
nuclear:
imports: priority 1
iron
rocket fuel
sulfuric acid
Modules + Beacons:
speed module III:
r = 5 red chip + 5 purple chip + 5 speed module II + 60 sec
f = 1 --> c = 1
ingredients: u = 1 / 60 sec
red chip: 5 * (1/60) = 0.08
purple chip: 5 * (1/60) = 0.08
speed module II:
r = 5 red chip + 5 purple chip + 4 speed module I + 30 sec
f = 1 --> c = 2.4
ingredients: u = 5 * (1/60) = 0/08
red chip: 5 * 0.08 = 0.4
purple chip: 5 * 0.08 = 0.4
speed module I:
r = 5 green chip + 5 red chip + 15 sec
f = 2 --> c = 2.4
ingredients: u = 4 * 0.08 = 0.32
green chip: 5 * 0.32 = 1.6
red chip: 5 * 0.32 = 1.6
prod module III: same as speed module III
beacon:
r = 10 steel + 10 copper cable + 20 green chip + 20 red chip + 15 sec
f = 1 --> c = 0.5
ingredients: u = 1 / 30 sec
steel plate: 10 * 1/30 = 1/3
green chip: 20 * 1/30 = 2/3
red chip: 20 * 1/30 = 2/3
copper cable:
u = 10 * 1/30 = 1/3
2r = 1 copper plate + 0.5 sec
r = 0.25 sec
u' = u/2 = 1/6
f = 1 --> c = 0.05
ingredients: u = 1/6 / 1.4 = 0.12
copper: 1 * 0.12 = 0.12
imports: priority 0
green chips: (1.6 / sec [speed module I]) + (1.6 / sec [prod module I]) + (0.6 / sec [beacon]) = 3.8 / sec (230 / min)
red chips: 2 * (0.08 [module III] + 0.4 [module II] + 1.6 [module I]) + (0.6 [beacon]) = 4.76 / sec (285 / min)
purple chips: 2 * (0.08 [module III] + 0.4 [module II]) = 1 / sec (60 / min)
steel: 1/3 [beacon] = 0.33 / sec (20 / min)
copper: 0.12 [beacon] = 0.12 / sec (7.2 / min)
Hub:
production:
signals:
imports:
iron
green chips
electric poles:
imports:
iron
copper
steel
lights:
imports:
iron + green chips
inserters:
iron
green chips
red chips
belts:
imports:
iron
copper
lube
robots:
imports:
green chips
red chips
steel
iron
pipes:
imports:
iron
steel
cables:
imports:
copper
green chips
radars:
imports:
green chips
iron
asm:
imports:
iron
green chips
red chips
steel
trains:
steel
green chips
iron
raw resources:
manufacture:
copper cable
engine
gear
import:
chip
red chip
purple chip
battery
plastic
modules
landfill
cliff explosives
imports: priority 0
iron
copper
steel
green chips
red chips
lube
brick + concrete:
imports: priority 3
stone
water
iron ore
END
Full list of production cells: 32 -- 8x4
LDS: (1.36 space science) + (1.15 yellow science) = ()
green chip: (1.2 green science) + (1.9 purple science) + (1.25 yellow science) + (4.34 space science)
red chip: (1.8 blue science) + (3.8 purple science) + (4.3 space science)
purple chip: (1 space science) + (0.76 yellow science) + surplus
solar farm: surplus
solar panel: (0.16 space science)
accumulator: (0.16 space science)
battery: (0.56 yellow science)
hub: 1 batch every 10 minutes
nuclear:
- nuclear fuel: surplus
- uranium fuel cell: TODO
oil processing:
- sulfur: (0.6 blue science)
- lube: (4 yellow science) + surplus for mall
- rocket fuel: (1.28 space science) + surplus for nuclear fuel
coal liquefaction:
- plastic: (8.9 LDS)
iron: (2 red science) + (5.6 green science) + (2.9 blue science) + (0.35 yellow science) + 0.136 space science) + steel + surplus
copper: (1.2 red science) + (35.6 LDS)
steel: (0.85 blue science) + (3.8 purple science) + (0.43 yellow science) + (3.56 LDS) + surplus
landfill: surplus
rail: (11.4 purple science) + surplus
stone brick: (3.8 purple science)
- concrete: surplus
modules (100 of each) + beacons (50): 1 batch every 10 minutes
science * 6
labs
outposts * 4
Blueprint books:
- Sciences 100SPM:
0eNrNXdtuI0ly/ZWFHo3mOO+Xhm1gsa9rYIGFnwxDoCR2NzEUKZNUj8cLfYA/xD/mLzEpkVS1mJdzgsW2X6Yx6q6jrKiIyMy4nPjbzd3iefa0ni+3t3er1a83n//2/pPNzed/Hfzv/u/m96vl248386/L6WL/s+3vT7Obzzfz7ezx5tPNcvq4/7/F9O7m5dPNfPkw+4+bz/rl3z7dzJbb+XY+e3v89X9+v10+P97N1rt/8MODn26eVpvdv10t9/i75yfafbr5ff+nenn5dPa06T2tW0/bztOp9bDrPOxbD/vOw6b1cGg/3Hzl2H62KezUfja2ns2dNavWw/u/bT5tm0+/q9h8uZmtt7sfFjTl8L3STncf5uvZ/dtfuhLgQOtWy6+Tb9Odrj9MWuAOB39Xys3jdLGYLKaPTyVIc4Qsgbwr5+PsYf78OJktdr90Pb+fPK0WsxKcbcF5SIIKf8lAS1Dj4BFZbcbxErvYhGNn7GuHxtcx6gNG71vHFhhkLLg6G9pWcDs0FlmrxfEcu1aDY3voQ6vWpwm0UbfQECsh3o81EtyeTQZWin9lq8iV4spuNfSRW8ZsDWfMvoWF2AfuqyxrHhGHRjYY3GNbdnshti4boW/c3J5tIi1ZtyzZIvZBnEAcayAaNz73biHb9XS5eVqtt5O72WLbOJHFH2FDCfbdap53i11/Xa92f1aBXRn40/FCs3rePj1vb0q/yPLrD8D6HQHrcFhPwFocNhCwBoeN9KHQFD9kUfHoQ9xRIAh4ptRPd9Rvvqxon1eE4BVsPZ4xSg1/T2/41SKwhAlmXAaEBSZ8rZ5eK4IaGHVLYmfnI776iK8+4agBR82sfQfYvAO7IR6lgWATtudgbQ6E6eG7VLD0WhFUx2izl/rOQJiixQUdaFREJITh4ftrSIygjdhthAyvHvf6kdn6cFRNWraCDTvyQUIc2xJfUnzaiPiWaGCDibgZEp8xsCtFQCMhZPmNIuLbIe5AIm6CuKNOil0poA8J3//ww0DCtz9890uWNGj8gJHYyIrHoXF7w49wCbc3/KycIguKqBez50Wpp0y4ueE3kqwYJ6/EDijjFkjc0rJhRYKA4gdQ4p6a8X2OiGZkz0bR8GBGpuOb+Nki42ao8QtJZuywEnkBDDFnevHAp9QK3/mIMJpWmkzcHSOKrpwkFwVBPS1kraw0/11ZOJ13OwrCl/EEYU+PfC9B3BPChRLWx5VWZJggDNPEyHSCUbXwtJKERT2/hWmtpfUElZXzlzfV0ki0qCM3F+UEYT+BeWsvrHeoLJuu9chNUfJBScQGNR+VhGCR3NwRsCy/QXlHP+JYgdCsYTf9tTGCiJ3ErI0VFo9U1k3vM66liWBJx6Tpt00QBOUERm2isLalsmw6nWaboqRDhojxWT5mCMFi9YQt8Q2qPLqxxgqC5c6Oza9pHR9PlNiz9bIiocqq2Y3FtFQQrOtoGrNNfMhQYMs2yyqYyoumyz2alkwUeHjc5Jxho4QQKlIf1dxRBnUb3ThgBcGTW3PzrOUCH+6SGDJdqtE8ntC1GampgVhJbfOo7SWxN4Eley0sVKssm722NE/ano+2IVbn+XAbBIuUELZvfYO6in6YrgIRuW25HRjxkqiZxJ7p6ol2MIIumNDNg3bAymrb0bFgwEYjU37cgp1Glccd1mpUedpjvUaVpwPWbFR5OkLdRpWHE9RuVHk4Q/1G5YejwhqOKk9rrOGo8jSoarr8NKhplacxRas8jOlZ5WFMzSoPQ1pWeRZSssqzkI6Vn02YilUexjSs8rAk0u8E+0KyROucRVqpHF0/7YDNP3lhRgJac6A68mz5k0VhR14FLglrpR3ywllYK42AZ0X0EiKfJ2u6zBhRqWwEyQvHXwGyFaYuINkIUgYSP5HpOmfoEwS8kROSRpQlNiDsxDRylo06Z1Ejpy03hSpZQTRgw0ZpWUE0hC1ILvBmZxRdywxorFEO7561iDC8LAECYdOly5AEIt6TC61SULQs8GBGZVl+BHkHrYje37I1ay3r/a2gGVHZM2K+2srKniFsPk0h8Azak8XEiFnoAHdbQxoVRYkUCJrPYUjsTWeymBiRMpQqx32P0aI8CwRtiE7xshEbK+kUr2A5UW0zYrTGi2qbIWg+2yHwB4atS4Y0NcGt+ZA6ZVE+BoG2glSIxCFYTRYMI2KG8uwZl4WVpWsgbMfwCpTN2HoZr0AFLcgqmBHTtVFWwQxhJ5wPAfoymc/CCPyMU2ztMmIBTssyO4hgRKwLQSAZS7MjeEQ0fCwSgvXCauZQtEIB2QK0ykjXSEOwiV5tQGAzvVoE1ksKlINgcxMwLCDSFjAsQLBWWP1c1mCeWgFaJB1yhFAF1AoCj+ajrCa6ImC6dhkSRWYLrRHUoFhUxJAZFoWAoxo2RghJwLLcDBCqgEVB4smCl9VQlzWXp0+AZEHTJ0CogkikwDWELKusLguYoE3A94eo2bpqCNWwqIgNR0sKAAJlmRGg92eZESDQQIdMJV4hRlEpdkVnE0leAAmCjTcioEnRsVKBR0haVKBdFm5iK6khOViy6BsCdeRKEcsl6BA8DhpE9cuVD8SGGyFZJpIFAgLNdPhV4luyEhU1l6XLkx0gkqDJDiBQywdeBd6FYT/A9x2iIIQIWuTAoiLmyzAe4AePnGQ10BW9zSwDASBPq+iQI4Sq+XipwDFYZWT0CbFIoismNajAOawGOJef9gQjQGUBgSAEqEBErBK58g5JyCZQWUwW1smV4cCajEPcpYKhoVrrsnh4ioHUWorFm8QrCA7vVK8gYNXjFXEEWYt6ZSlRVjdVQUtMo3cFI0PV8WXhGCUrTiovxRD9yxUEvH25AmCRcv+KMJyk87myDllDcgUsEB3EFQhoPE9FLklUrVJZSIYbW8sAVsG9tRUAjXRmlEUxSPszTbWVhVhRbUUFzBHNqRUILytCqKAFqImlIueI91xWfn3CWy4rCBlqpCm/gFOids3ySqSp9gqaYZoedxj/9ultENvnwdy2T3uZzBa7n/15erf5g1bqr3/5591Pv8/Wm1eMGHcnIW+8c+p9Zpvar0c2/G36vF09Tvfrm2zu57Pl/WzyNL3/VTYQDmVU1khVCM2ojKAyV/TTas0H3P4l3fEiAeo3vIB5RrD4wEseWHyUSF7VFl+/Zb77p70JbKfL7eR+9Xg3X063qwbNjdZnv2r3/Ha9Wtzezb5Nv893D++e+DJf7DwDZFn3q6en2XrytJhuZ3tzut+98PbVWt4Nqz14j/jKAkENLlSYpMy1JDVf77wPLSfN+51MjQpEUbkZgahNIWt9dzN386/d+5f65chC/IvvDA1EF8lNDhROjzDtkYHCeQmdwYHCkQOdkYEjjhww6hqzHYy+lLXftGcKopoVqWmCwqELpj1TUDYMwbSHCcpI9F17vODdbLrzwQ3mp7ej5mb/483TbHfIfVw9PC9mE7tfb3vYIGpfnpo5iKI6atzgdLOZPd4t5rvD/OP0/tt8uX/DBlPep5sd8vzptAl9nU3Xk9++zXYn8IHEntY7Ye0W8H33WweCcy/tYYVfppstwFXo+upDlNpr+GNYw4Ii52uLvr7C397RWmOpCYYoqqEGGWIpjhaVy+C23jFwQxu4TdxCw1Gw7XmGqCg1NdUQRFXUOEPKV6ihq6jdmYUuAwwcHP1FkWHEWdLtqFFnHGpY/p7zD4oabti2Ek0biaN3QU0NNgRBDTXQkNJre0W9HhTrb54W8235M/9SFtynw8319mm9u1DuYHco6/nXb+W5d5o8s5n+ruPZ7RH4Sp6uJEaiQo40fUuNQQRcUvnrB1J+yKtGEhM4sQxq8SGPZKnRhm2P5GiPFJRk2y5+oKBFR5Vi6CCYy0ph3WXDC4tFPq49urD9ZSL/ZdgrHjJrkrUhIB4zqLV/Wv02W082v823998Kub6DZ06/+Neo3HL5Bvsqkj89q2EqYP7wNq3wt93vfv0ftU8a/OlZn/0j9eM/emmPPWQUs5gwIkYbHlPY/Ui2IjE1cDCK7BVPa2qkIQhqqFmGIOiZZ29nvv54Oob84XAMQfNgWp4HW6y+zjfbnY5dPwvm8aSJYWfBIaCWi/u7aiLp/yTs72g5GyazhoIC1hfoj6eZNBoKCrw+mTNL19KIN0e/Wu7M8H6+vn+eb2WJM5ByHkmxKFozAGevaWcxbuYqEku1LCqXuMJuq4O0yNgBW+3xmQLA3Dwi3eWLObQLs10BT8wlFnTcXFeEV0qkuvA57oNMV+0q8D4mi06fmD64FYPbCyfwusvSXgHP9xC2hWTRgoRAq8xRb+KFY3YvzG9FXIiZyfLrU5bflbP8lm0whpIpzbC6qTr0H8KPJxVpJ6u6w4cskFKiTQjJfdEmxKWpgJE3/RcPssHViExpi0JkSlsUIlOWtvc4KqKcelHwRiLIQNATZ1srNazpI+kMS0T5J+dXhrfrwY/qfR76X8y+lAstncjx/JDO+yCLdtYKTJVrKm8Fugvka9AnRUNlrFrZAN9SvSzauk0nr9QxOD4t7mleGuCjDFJJYHLuPWF50tJygEqammNJNjSVh8Iwgdunh9PFE11ap2knpnpHCQWgsQanqJRUb2NGVphZlQZcAsMKFdD0XtAyO3FXs5PA7ph21LyWgj+HAyeeHADb+SvmpFEsCAoB9dB8ZSLDFRXgXCNNyAacXQM7I9dRuSfMIQJ3gqhlx+Ei8UE06KdP9KcnMk9l0riiRB0LCgSXBtRQ7STr/pb+tlIwy7r/WN0s6547qZdljXRdPhCpi7RxIvnWhAbTMq9SWeT1Ugkr0XsikvBJ/IkUOGIQrFJHVMNlcf982Ic3bBLXyJO4999mj/P76WKEJC6mDfkYw27mbqlK4CKWaHJAGapfATMZTnElr0998CzFBs4UQYod4XA9j933XkoKna/XAKL7l2yxtJnOPW2LYb1wYeveUcURWEtTQUOwjqaChmBplmUINbCM0BBqZKmFIdQEBCRPfQi/IKOq6Rs0sk6jLm1rubSBzxUjgKGdz8S7t41kqAi9ekQmfDs+ggpRfhk4ymr4vntklZFu6ERQE56OM1SKU5aTDJclOvEXJzrxLGxdlrEu0zGuKq0DkfPE1YvIeeKWNch51j24Ixy4pYtykK/GMFoEsUscZEDboYR4yrGBoQQLRBL2wfJeJGGQToXKByvHjourBzfPiy/Pa6qWlKGDzlLDc5qlK0XUj0jmHo+PCKplCVshVI6oQpuDKqtyCcsgHQvmCdJ51rccK5C2cAZmmLDq9BqCfIq+AZZwbsgJkDM7S982+8FUJ2vb74kH0ud+jE7eUZWATvPqay/IEvyG5Y/m4PmciBqBbYUNxfYs62hLIyNuJMjLEfdO6NTiM24xgMEEmjAG8OxB8xdDwSEoGPyuZagUbO/6wiVfe0YCqBHRR2jhrxToCwZ/zBkkZnundkj9iZyshwWR6TO7QFsHSVrsyI6e2D+exotHdr3nIu9m/7TkzK7HPrLPll/3e+Pzkuv0iYY+t/P6zPQ5alQBiWyzVjAoPbsBAQ1wokiQb4lookiAndioMhCSIKYRTRIKmhSa0hJknfSFVBNhlKwxAmrZ6CwC6tjDDgLq0TSh4HsFNk6LLJieq4eAoglNgRDyZZwhpeVmdVkJXxGTjQIjmIYMzyKYFkwQC1LPbB82slxPzpFDMAOYxxaIgA8AW/4wmZPkpObGPqlNH75Pl/c7oUgaszN9XLP0cU0zs5Fg76EVPX8MQjXsiQ1CtaLypVSu/3Ci+qUKmJcUMKUeR/6fDtEytsTMykvMjvG3Ufjy27XadsTiMn1iwAaqy5rB615VGbae0FgOFiTUjdWQfcK6sRjgoqJPHcyi6q9TLVKQlXgdy3iCsIzrnXW7XarVq4wrP2/Q6rfy4yRXjS43vI+QW9zOZoszshrX5agnriGmzIh7aZGXzjgscwdJOCxTghJxWOKerwMOS9z0tYdhmWov7XBYQSmlo+q94FJKBNbyNY9u3PourXFYTxc9IqiBLtB045Z54bZg6FAahJrpIj83arnXBDdbSx//IVYDQ1eEIGvlazfGZbUgHAzBvk54Q6LOS+NTCwhiC2JDIJgtdJlxJ1xGxa4jjEpQsR/PBQgqYVsZRyXiaApHtWhDn7ZsHV5EiFNNP6fnoIGw770Eo1RW6QFTyKmKpXZJvry6asTuA0dNJKsWLXar/6BSrFSspeuUYo3YjABxtR/3eANVr2iiBA3IR3qqBcF3Plc93uotUadmO0VToBG569uQZ4YHKqmyE6TveI05zfoOgaYrFK4TVBt498qgbgtTJ9/QpoGq3DTyHbZDGA9W0SNvZy4kTQuXUWzgfWWBNet0re+An53x3ZCgmsfbBgmuDqLFcVAYBtbZmsKXOMWEvzyvl9P75mcwHWr57iTk8kYRFT6NGeG1YzjkfWtdhr6aICU0wliuGT+Wu9rpyd3u2//KxHKZ0i3cqzC1W7g1E+QeGjdngt3D4OY8pPdAmkOOcykmle6QCPYqpAZdXVL4oR2g4EqayrCVl2TwE7pCDuiDuiuw4SS2lufw476iSq2aEjP18v4kHMVXfr14aStFIqea2NZqMBXXqr6cTA4Ser/nt+uhGNeufmKRSte9D+qv0AiPHjPAoxMQ4sk8FwVwtc48FYWhqrn64SiACCnTUSCgKSYLgkCavhbnxOZ8EPnSJckGqSFSFxKgXlpFddhlzLhVVGVmy14VFRxo0nycaVhgJZsDGTqVVuN1eWkVxK1o5akqdGEytEp6fDuEmi/j6yyCasWWe0Oomg7y8c5Ma7ZSGfEQmmWngOThLpvhWQZlycCh1w9kOBICjXQrYREmkTMDjn6gCJbH7+rTRHENvg8YDbMwIy7PsOOZoDVaMhQIgTrye6fG9yaKaPCjpTZstBICRfrBM/7BEx4fhPDyFbr8tFVX6HLUTNkMvhMzZTP42YYpm8HNnSmbwR0dUzaDn86ZspmEo0Y2XgqhJjYGCaFmNl6KoCKTYQ4fvzyazmm4erwCYNDy8crzFi0frzzv0PLxyvMeLB+vPM6moyswkW7NK8KwKWekWtmxKWeovFzR/Y1FGD1+P5/2hjxAQi/MzgODQNl5YNDr+/H7LjVRtpHw12fngUGgiVwp9Prs0EqIMVexB1+oQ0OTB18IlO5GhFBp/gwIlS5HhlC9KIExepdtcwCy6XYbEUUcGnc5ga5/Lm8HBKGPxo030BXPEDO1Yo+ZECpd8Qyh0tcihPOaob85kggUcZzItEbv4FtP54th03q3a11H+rIFyZXuUYBQI2tbEGpibQtCzaxtIajE9BWdcVSuWbvc/Z6E3dqxjEa1a1dWJOvXriyIadiurEfUsR17/AB/OdVQ/+GvHEOAkzMEPG/ni31157XpAY6TRvUo/ABHNHMBQYBrrYjVONdakCeqcSrrCbJyHOn4mGMXW77C/JjT18tXmCBzrJPL1xghc+zTyJfMkKmCGzF4P2wmljgzTsYcCgLjuONkjMdhiXIC43BYZtaFxWGZsgKDwxJ1BUbjsJknh4gjMw1kHFbz5BBxZKaBiMNanhwijsw0gFsZwzSgcStjqAY0bmXUSBncyhiyAY1bGcM2oHErY+gGcCOzdJ0chGro/tk4Kt3ABDcFS49jhVA9PQEqjko3MMGt1vITm+KodAMT3GYtS9iJgDqWsRMC1WxnaqS4Bno14/rYteLBovFkR2IFgPqZc5E3y7VZBsDu5gGLzan7rnhJltIDeNppBuDbMpz5R7cZeHoAaAhFmarDtOkGUK+MCCMjzUdhqOE44UDjvT1M0OGpQRSu87ka9ADQJAoLm9Mg8wyak72yOQ3S1oAktVTxPVtGi+gpkchWOChbRguBJnY/CqPyD+C2TySyHQ6q2Q79cA0ugTAql0DGQR3bwo+AeppVLIxKDKBxm2JyyrhRMRlm3KqYDDNuVkSGWeN2xWSYccMSEAIEihAAbVIP405YwW2LyAUb3LaIXLDBbYtp08dti8gFG9y2mFwwbltELtjgtpXILmdToe27uJRhd5q7n202+4MiOzmJmOBicEsepKQhCgd3vAzbMoXDWXq6knA8cY62GQT6FysLcDiAIz59a030jM/QQkvEpQzibEuZuJRxs1cYInbX4RiAsFILy8gs+aOaXGzJd9P9V/udKfLLlo856VFjTvvG5S5RgSOiTsCMRWI0zBFVU8Nh0MiRGZtTIEnHSmeenFlfg1VgokemFcBHsFO8Ap5YLU0sgMFaQYzKXEYt0A9SGaRfn8+faI5WAE2gQLBREMEygolDic7U6HEJByYGhyUoB/Ap9EPKATDiBqEadq0jcwwoAtWx4UE9LsuAJeRK87OacXkGGH1NbNwRWisdIr0KAQEkAaLkJhBrZYkIJiMzEURCAnScFForTaCqr8FJgKFGFhWSQKKDutBiMw17HY4CaLUMSQHhtxiWAmJDYGgKiLMSz1OAwdK9M5OxmQoIN2Pp7pnJyFwFmnAJlu6fmZBsBWiIG4LVdDQauZEwYz4I43WWXi0E6+iANOIYicoXQ5xmGNoE4uAxKHWhom567KhbeZhfvyHQJbjPQ/N9AS7DjR4CdK/QTg8JuEY7PSTgBu30kIBbsNNDgu1oTrcLGR8a9MMMxwPM0jzkeOhHWmKF9Lcfz/IIlVZoyTCTlGaxATYoiMGyOC1+tIC1++UWhBHxtSlglx0Uv2DQGYd27KFecUQOfYU88WPTkb8Q8MkNlY8WSckOiJJL298huXO7Xd0uVl/nm+38/nY52/62Wv9683m7fp5dTMlg8I+Q2RuQGpeS4bAJq5EpGTyOilSJapwvN2IduLrlA5nCGHwHYEgSIo5KM9KpkUkSMo4K8Twm/FvT1zs1Lj2Cwd1t0jwbX4chAbx2qR43AnjPgt7SsdcsCNWztywINYxC3ZbGoQ5O7Kimd4aeU237l8Xv+4fWq7vVdvJlvUcTVrbrQX0LODlKXXU9mR3tpos8eaY01mq2/LoHeS0QE6/v3byf9vB1Fqni04Z9uzLr09Xejh2Ao0ND1YkhGgcHi3A7EXUvJx6qIg5daVp5S7q2FHpLurYUQqVrSy3SXU/XlkKomt0MIFRZnZsZO+DWpLWzvbibUZaixPFlECejxHFlNM9Q4lRWFESUOJUFsRt2ZU08R20RJnOv1mDfNVpBojaNtxoUqbRrJo+FyWiTrtmHyvujnfYRo17FpNHEnRGYWm8G1S77zXuyXU3eoiGXkLeZQbVL80hQ+RAee7qiCQG/aUESirCETJHgzxRRk8jpusud7pfF8/zh3esunvczLne/fpjkUF1vq/t5CHOgcmND4mZQJ9MPz9kTEWQ3QmxMPwPhxYvuJyCSGBvIP2gxeJ99/eBPJOCeDZwFhA0osEE+CLVP0HZwgRJB0CSZ0JIzG61DUG0/C3g4/gsEYWl2W2jJhg0FQqiWva1BqI69ZUGo/SEIxoo/WmAvdNCSI3uhg1ATe6GL5XemL4bI6hx9MYRQ6YshRGMmuxiG0S+GgzAOUYlhiDKdQ2q9zJLqHH0e0eqlnyA0Drsf+iNkEYO8H7omWCTrnrVG9Iit0cZQ2XkMEKpna7QxVHYgA4ZqyAplDNWS7Zi6pVGeTuBji6QHxmGwWPvucR5b5ZVp1gpsbXQWHoOleSsg2EDn4TFYmrkCg6WpKzBYMCGfW+oUyJDkMYlcQfP0DDPoTfnhcBBsZA/gGCw/Hg6CzewpGYJlpowQhh+xmjLTPH1EkkLeNI8fBNeLIXxRpOuqMVgvOh5rNfb5eLH6bfIwW25eud226+f77fN6xrAFmEjXcp9LqD1k4V/euOf+sOEmLHj5hIXN0/R+NsJ8BejbnkiBTf4QUr5uWqx/CeLpks9eoTnrARNPupZ0pg/fp7vv+yCRjaPZIhDRkF7h1ME/umguIAAKPA8DIJkoG3AzMbE98eJYyjq5/zbbbHemvnvp7zuTX6++zx+KpAYn5HSewNP7/6xnDx/zc3kvquZwjAaLwrE18PUX9p3/QZlvd3/3cML5Ml9vtrdCb/Gmia/audPGp+n6VRs/3/zDzQsugvSqLTernc9e7yR7u8O8/3W3ov+cvRYttmZ7wKzqJgLVj1rg1WI/K6cl3jIhc555TzPyNI9MrNbz1o/ACpwKogscjcdRy/yZt+2W8yeBMgPcvsyAD4/DGgGXDpQO50dmGIA4jZrw4Qhcy8/igHAdP94CwvX8NA4INwhcG4IbBVaB4CaaYQqCzbzLBGCZOR+RgNU0w9RHWHfhpI+jSTgAlh/1Yey4sz5OHqc8oM4LkIopIRukR9nywmR7mK7tYfUSGJvgUW5G0XliImU6CZWXuGzUx+RdAfqwGixhkojCGYGuqc5oDhhJ55dRhnKcqEfSsLdhKICbC0dtnIhjgPujC4K9BugyJbKek0AsN/Fqi6w2C/ShOFDVKwFS8S4+yG+2LsF+oE2drc8bgQ5FapIGjgvcbjxEpngiHkIk4GFX/frinH8iGv0ngRCvwJQQ6SZyv/VNvWcIjHWkhl9w41lewU9+db26/3W2jxa+BoQualsKmEESr2hoVkRAXYJFt2CBigeMH9y1VCV4TvGaeheCwN+Gl8sGY7wjFYvtQxKfCRxzJggZ7M4xrfeOSnjursBpwWYABEmiZPMCYjrR4luCo+0l8kMVoUV7HhaRceDGjRe1P7IpCdtES7SPROSXaVRAfEnBnpfXpCQIEmp34SSKd6Ric2uy1BHVAbMenMDKgfBMklyfgPhMCtQRFZGA4LSHLJS/OEFypY593OAK8thnr3Tsy9SxD3lF/tgHfODMU2wD3zcLAoW66L+yIFBYrh0fdNSzxyvNHK9ypLyb7tt2FqS7NBDMy4JJ2xqaPqAo9waIYDg4onveElD/SQZIINxAyvK4kISd8BZepvMZdMeT7lNdyX0yoyYo1Yw0LPSdE3yGk2hnpq7P5W+slez+XEHTwutffunMj4DupBUU/FLGd94xcyNOtowQK2r+VpYR2MCcsRQ3NgI40qhxR0YoRqL0PQ0RqIHvaQLlMnx+GanIMfy+htQPGUvd+NNLZ1YEt+mEa+05xstiEJX3o3cwSPT0BgbpCZ6M9gLl5pPRSLWW5ZPRHoHVhOMM3ICJvt8M446WUIQ4HYsKSdOjXlOgWIPiD3A+5/EYUnYANuI1GYLV8sEUi0iYty6HDGxgWbObk1SHYyVGGVU6HCjBbR/XivgMZ1H07dyOO4VCER/Ws6iIFg4qQnolPIJRC5G5ALneMAjm/uN6sx+EAyddZ+gDXKeCwGouQdMb68AlaHpzHGRjCN2FExwU8VX8NUdx0NUfyA2IL/6ABJFkLldfy+My5SPI2J+gcA8O4bHDNpGvQNd/kIMj2u5boOLBofbjBOB09ATZzQJtlYh7ClEUtbWXjoJQ+HuzkRPktSMaOBF8frB13jUEyTbOtz7KcO7D02K+rTikA2upO6saf+spLXSMfjpUkt8+reer9e537j3p/Ou3cn8UXz+CXOUG5SO9SfYkLevrtIM+Lev+S/VoWZlRFAp/dTbqghzEI30fjOOOo5gUWcJcZxwFc/oLLxdOoVDweyd2W4Rem87fZSCZmWjzRCKDTLGKw9dK94pCqJEdmQ6hJnbqPYSa+en0+ay3vNvTmhWpv0jOIrOWhigaUYmCf7tBIQowCKwt5MZkOqIyxeFSZif+QQJhG9sGZE4lEoGv69lsecaHroZkAa8/2acjj6QHrz+okC0MR0t8mW62jVFoE9fgdBwOk/hAH7Ge/fvz7s8W5Fv9wes/ux0SchxJNTrMPAOe7d1rtmdS9F6ySVw5KIkhXtKSL3m4W395ni26rzYcYYEpmBEo2E6NPyqYChWNGo6/6AhbNWXNxpaQpPJwHoWMOtN15lKAqNBaSd9hx3Ede7qoDz/R1W8dBQYxcHGQPRQoWE5m4StWka5CZ6nyVSgjCVoXhtNTa2IcokZmLJirEHFqK1CiIXcmpEXznQYdpk93narGOp2Om7V5uZx16Pt8vX2eLgZ0a6//YvLHH+mG9qryA9/Q//zXfzOMQ2cHg/OTQ9WxD0qcHmb3eyaoNhHXge7SHMMHZ/I5oLzLZ3MFAf3je9QFxtxp3xu73f3q6ffbV2W5/bJePd6+Hfw/f5kuNjNK6m6vaDemucPWxB4oZbQ/TxnzpbroPiqfyVUpxI/no818saqfb0rlRbuVlnnDNU2obRFmn8yiAnHY4TAX3FuG91WPcc72Fb85qH8rpJZ0lZz7h87H9fRhur7pjITpjdnW3cEv/ZnP3fEu4HxFW3jJ193o62y6nvz2bfZ6zhflzobzYPojsSHaKGjak21KiOYlVEcJdSa9IP7P/zz/Fy/0f3uOxx9/Yqv+z2RKCu7nSSFduguc3S1NqknBKtLB+MJusNmdAReLnb3ddObpvNIxNu6vrqW2FiuGt0et7czL6a0lNNeCkGnEd/vpcsB5doarbi4PnBKgm7KKlIHEn2cg/kIDsWduwlXdhCXH4B0P6eFystyONApEubgI9mVfP95aau/Pucnw87QgXLpZpLPNItak4JQochS4yFH1xgJVidp3OxyXvxe41B2/yce74j9RX8Snsxj7p6asCKbf4awoOrIWrxJpdli7yMmyOpOfIMWMTTAP746xrGxjzH86nV5zbwIU4pDyz3NI9kKH5M62JV/3CEkUOkq/eGhfukYgyQa1z618IPfmY0l/bMSRdjdrKoxkz/YAd+6DjnEmbB/9+Ak9uNE6bqNNP0+v3aXHrXgm5OpG6yXBGPdu6pCX3qwW0/XkaboceulaCMbT1xegWGA4GY0OOsHvOb2/f358XhxcQu896asR9J5U4N/onxj4v1Cr/VlBAOy8B5Xz0/V8++1x9vr5+/7bKNB/v8OO4MI3sz3G7Y+efOe3n2Y72b2u4ubvZX785YIbS8cxe1eVPhX+fyU8/UkqaS49QJw52oYUImzu5mibnaF/oC7boSpfU3lP95MzBd6Xow3V9+/kKS3m++z7HpizRfWsQIxEPHw8JBEyaPOoV2kfa5jPaNxLpdiL2ZdyfmjQAYIcXw8qY6+b+Jwuf99+my+/9q60/w/Sn8F1vB8a3glGEtgok8QPp0mCaonM8wjEgNY3VEeFQGbL6d1idvsw3+z/PHyMd/GtZ9OH22/TN/+x3S1u83bN+DTcAV5//vZPH1cPbyEIsVuofyzPytch8g2M2SODXQjy18MXQ+IIzEzMIqq7dCTmG+rZsbc9V/Cv+yl/7FTB4rDCyd1q9esQ+Q1z8w463Wc5Z7cHEFX5LS//C6E/v00=
- Rail System:
0eNrlfd1uY0ly5qsMdF00Tv5nNuy98WCNxWIBw5g7oyFQ0ik1t1WkTFLV0x7UA/gtfOMXmydZHvHviMw45/uCbE+x92Z6VBI/RkZGRmRGfhnxl7uHl7f2dTmbr+8fFouf7374y/FfVnc//Gvvx+53s8fFfPvPq9nzfPrS/dv619f27oe72br9cvfpbj790v20Xk5n88lqvXi9+/bpbjZ/av9894P59uOnu3a+nq1n7Rbl/Ydf7+dvXx7a5eYPDp9/fFt+bZ8mG5SXDejrYrX5zGLefd0GZ+I2f/hr998N9tNs2T5ufxm/fTqDtAfIVSfT809rCdTGLaj/CGoroA4H9TCox0EtDBpw0AYGjTCoyTBowkHxico4KD5RBQfFJ8o0OCo+U8bAqPhMGXxN4TNl8DWFz5Qh1hQOCq8pYp7gJUXICa8oQqHwgiJmHl5PuIlaeDURi8nCi4lY9xZeTISHsvBiInyphRcT4fUtvJiI+GTx1URMFLyciJhvM7bjsaW64XE1SDw8ua2gzUfQVNvwwOvJ2RqmqWHCu73t4B2wL8Mjk4s1OWsKdfBiqusz1DA9NnaXakOvzhC+0/PbKUL2ufhOzzcwKL7TcxkGzezMI6D0UkK2+fhGz8ET5fF9noMnyhNnJ3iivGMPZAioZw9kCGhgD2QIaGQPZAhoYg9kCGhmD2QIaGEPZMgZt2EPZAioYc9jCKglj2MIpiNPYwimJw9jCGYgz2IIZuSOYghk4k5iCGTmDmIIZOHOYUhSp+GOYQikIU9hCKYlD2EIpiPPYAimJ49gCGYgT2AIZiQPYAhmIs9fCGYmj18IJryK8K1IgpcRvmdK8DrCN3fJkic6BJM9KSGY8DrC9/UJXkf4ASTB60g6Kf34aXuH8kPvyuXT3cv0oX3Z/NufuguVP7xfqHy6+9ouV9uTYHKmCTZ43xyvWZpOPN21zfzt8aWdLief3zZfekS0V7u42aUxysfB+4subvbpFvvtoquaPUzz7aLLmR2My98Gr2O6T08ef3q/JdvOyTlU83dhB5b+LownKiItY/w2eBGDyGgPMoZTGf0lFzLNQcTRZEphMf14coq4jvEH1OELmOFEzw7EfLvswmUvTHUt8HcsrroYDL0abHU1mEDjVC0Wvz0Zhkm162vpZsN2lrnxq+vl4uX+of1p+nW2WHZ/8jhbPr7N1veb3z0dPvd5tlyt70nv23nt9bRz4U33w5fX6XK67r7k7h/ef737onY+fXhp759mq+6/dz+sl2/tp+0Q7rshvLZP59/8dbZcv72v6L3m3v9i8qe7b9tvnm+Xx6r7jOn+Z9k+9V3/7KnbFn37sfvzjZTbgd79S7sT/oKro8Nk11dUYSe7CmPpBW6rawq/FBqGoZe4rS5N/OZnGIZe4aa6wnvXOw+z50n7sjGq5exx8rrYGOr5qWUHlb6NXOp8mb68TF6mXyqr8xCPTH6PR6Alm35OvfuHjefbmPZF90DDmqGXg6k6rd51z2y+apfrzT8OKOUsSNv/PidmT5zY3zOuZjsfn+4Wm73vcvbUbjzb9PHnjTD/3grJ++MCf1k8z1brjdk9/tSu1pPX6Wo1+9pOXpeLrxukir7Mib5wd/jRiGzZCv0wXQpCst6jbgSO9h6m6hQd6z0EGN571PfugRWnDkNvjE3VKTp65ddh6JVfdSCOjYNVFE+HwaoBetaO6yj8me/bRVdMgyj8JvfbRbdIgyisCdcPsaQB10FY860PiLTeKkho6GuKi256hkBY060ugEBabh2ENdx6poK02zoIa7Z1jxlIuxVQWMOtR5NAWm4dJbKmW4+0kbRdAYU13vouJJLWK6Cw5lvfX0fSfgUU1oDrx6lIGrCAQnveuumxrreKklgDrh/DE2nAAgprwPUEUO/+AkjW2TKemkysMdcTZYlNlNXzdom15noaMSUu4Xqab63R1xKZGN5INpoPT4W6lXBpPC2cWauvZ4Wz+ZhjH82uOwcl19llUL8AyA6Ubn8/cZ76r62FzK6F+hVKZtdCd6EzfLe2TVpil2tGf7k2loa4/n2bcN0WLrluu85tG3jZNmh/A9dj5pKnUIM3ePHCy6Z0ydMn4VLMXXLRNngXWMh7XUPdrA3O7vFi0W9m96K3TcM3dKzlX3q3dqWrtRu9Wbvs7idf5e4Hv0IauftprnP3Y65092Ovc/fjrnT3469zURKudFESr5Jqt+k6qXabr5Jqt+VKqfbmOqn2oyl/aZ9mb1/Grvwm4XDV0tTd/Ie7jenjzxP5musIVn6Day7pxnyzm3v8efS6nrjpCqdXkVm4iuxd19BXXJPY19V1LnGakUucvYImG+U8zObvyhlgFJX93dvZtH2evWwMQNh0A/P01k2S+ViXYLa672T4PH1ZtcRk2ZPJ2uyLhcmK17k9SorlkG55OeRTDUdJw1mhmnzLqjk1Ppck1ZRreIpU9xS+uQZ4FsDNVW5LPRFF7HeybMxVo0gwgm14MYo8vH3+XNWQ+aghUKRgt2yIZftvbxv4+74X33vigyjTp6/T+ePmxLlT7t3Bb9vmneC8T5UcPvH6Mn2XvSNbHJ180/FGLrndHbSqoPA44YY9jj9luATJGX+4sUZVE2/ZGZ8yyHyQVJOu4S+D4C/zNcCjAF6uwhb5cG+POuNww844mNNlUwTb+EBGQFUTb1g1/nQPEyTiZY9iQcepyMQp705FckTgWr22m6j1ZfH09tJO3DESBSFqLTd/uZHp6+bL6p/6cZgoQusikDH7oy5iQ+jiYbre/PLX8djdzp9n83byNu8Hemns/hpcsx6/hc1UuLpzDJqI5295M3C6xYxOWrpXiXjCPQDN66nz/T7welDP6285KDWn0yflmWKj9zae8jannjcWwtvMlov55Lnjnv/yU9u+fDwE1LzOy+KXyVM7X3Wud2M6Gzf8tmz7H6v6H5ZzNRnnXKHewtywt4inc5skb/GBR4aqxt6yaix6quqR4y5wpKbuSHuUuQvArQAer0Knjknhpc0Ne+l4mv5MopfOCtXYW1ZNQk9VsegDmGUCWDyNqYnZLj92bzWXk8f3Z5zje+b3/epi3o2lliP7cZi1SSvCUIoop4pgIvnG3bRfHl5m8+fJl+njT93RwI2H881AvsweN4b2+jKdr0fjeDLXeJmRFHG8ueFYlU7DeJbSXEkTxpvfUxhP0l1gukYYF+7L01WiuAR+lXdISRHEmxsOVOk0hmcphidNDG9+TzE8SVeY6YIY3jChK53G8MzE8EMW6cts3sWvp+XsBTiKHj72+W05nz6246E860M5p47TSJ6ZSP6y2NjGYr1xO728Xj16T5fPi8kv0+eNvL0//XGYPq9/x5jtFfykcJLK1yDmCAepDzR6MKze8uE4n2YZixRVs+I29pYzKul0v5G9pJl4jTe7WRG2b/l8mU/DdpHSMlkRtm85KZFOo3aWonbWR23qvJlPg3Zp2Mzx5tS4Bo7du0N65a9roaroozSVeMinUbokYvzL6VOfNCNcVa7WbfsCD9xc4YF/URyub/lGLfuTWTSNxNoq19hiCDdqxWvvRoWr0RKuUaihRN7L3vIFXU5n1iAFoJLUboa6oCvNmUiZOg18kG21Ucr0uR11PMvFw+J1sRxP6ZV8UiNsrODYiNmWK1QG2Zz4eCd2y0S4zmedGImRvNjmb3nl3DKBstizBdSIurnGCVVg8pnmGvEjSOD+GtVwTBN4h3/LXLjOv5+unChahyIa3jKHspzppgmibvThkGIKdtHvdMKYePh5uhHpbfOvy+flJrA9TR7al/VoOBz8wI9VfWS1Pii2YDnfsST99qDiiIYVc/L53XeefLCuoHKFwlvGKCL9Lb8/6uL6yXxbMZoZRaRPN70NOtsrG1k51wj1WaqTcI1QnyTwq1SbM0YR6vMth3pzFs6sF61DEerTTe+DwtnSEWO90cd6rkK0OYv1NjAXg39+XbarFR/u3zcJm6U1X3Vn4JPPOCH9Zow+5CduC3QW801it0Cr15fZeg1E+L0Sqx+o66FcoY6lsYrIXm46sp8FLytxFow1V4gvQhUC0ytqQuYipYIShi5wUn+Jb6zn3XK56Zh15padFY0iqP1P4dzymf9xjFt+nb22H91pze8IpjfyyNiwNWckQ1PUfDC3fOffOZvTSZXdj6LsgzE3rZ2EH7vsNSo/GIGLYtw1Sj8YI6Gbq1RsNk5R/MHc8v18d5Y4XT/SaxvjnEI7t8zrMGd1U4yXteP1BAbqBt+cVewwPlB3+P1iisPbaOk0ET6Ev49lYI9/FaVw5/Qx3xhOV/6is9jH8WQh6Nfa342wHgxb5UnyWJqIf8vMB3NW5sl4MeJrCj0Z9/uK+GKpJ3OVWk9GKrp6lWJPxkno5iptEYym3JO5Za6IOStaYYIY07wm4rubjvhn2hHr9Bl/QcSnyDTmrICCCUwU683a/iAqMvdOZnns4OoviOTuwkjuPVNhpNJVcITFWCUG9RRYV0i8RqMV4zVx/abJQP4srkcxle81cT3c9K7nLK57Ma77q8R1ibITrhLXJbZRMFfpMGSCJq7fNCVIjuJBE8XDTe9xzs7tQYzi4YIoznGAwnkUL8fmzO//QAS0D52nBx/MfeiCO3ILFi6I54Hb05zF8+DZlxjvkoHPEc7/tq6AeI3eZKZXyIq9jZIIFHxbOqHjwzE8PLWPnaPGymybk+Ywvu4QdphHh7BSeIT2a7v8df3TbP48FkQ/3S3e1q9vOm/z+uv9uzncf14uvtzP5hucfWFvZl13dvvpzna/f1627fzsL+SdTGyu0X3ORHOV9nMm2mv0nzPRXaUBnYn+Gh3oTK9e0QevebY72XeOQ+z8Nwp8p72v//of//n+B7tva+ddzZf7p9nqvfbLD+vlW/tpO6r7blSv7RP+9X/igmrqqt/XDfw0kO0KOG/GtNXM3T92A+wKp812r7Zftlpcdo/Miy+NKdE0OZvcBG9KsSZ39Smeu19vfo5Nyj4VW5qmycH7/e8fut+bnK0LtqRUijGNNzaUFEPsbpan7wAlN27zkbD5z+aA5qJ1jY8bgLq1xKs0LDR0L0cBJlOtlU6bDfoqJtvZUWjWQzovoQURW19HaIiE93asdwYMVVB3WQvDamOrRLo1oZFUr4AL0Nxtc4KsgsTBawyh15aT8rKJNHqh1VavvAkgldxeMFXBSeuvdzwzmbT+eps4w9aoGO9S2Pe1WK9Cy/QqlKLJP999+9goBetLWGHqnRqd0GTBD3YnrLMhpd5x50f/kaaFw+doO1Z8HWF7Cm8Qzwucb9D2fSTft7CDPQ0hvRhRL36w1SEE7iml44lQP6J0PGnoRpAKN2BHDbj3OARCDxw6/roijGjBWGxbbeO+vO0H6WJ/f3g33ClxGL9R4nsM33glPnXs4OGPy+6XxeKpPaZDJGe0vXTq2p4Imx3ev0n7AOX7aql0d4+cPTxWD46V4Gn7kbH2WM3DsjlUNss7Kkk2B8oWUNk87z4k2QJnI2Pl3Xsc2pGDktnVKT1ZcJc1cdx7OTvug/GWjhPrcVS854q1MCre7/HghxFUPF/VuRIUFW9rbvDZcngyy+CzRXRNNMRs4fVTDDFbeEaEmCx8aRFzlfni4eOgxMKCQX1D9vJGMOFVRchJ9woGMOEVhc883qcNN1EPryZiMeEEEWLde3gxES7Kw4uJ8KZ4ZzDC8Qd4MRExCqciEOE0wMuJiPy9C/7BnU+3Q6hsfNxFvZMmbl+XbTTzFoLuVNCM9lHCDkDN8N42KM4/DZIf6d3cYieEMUELf0CABI2KUxEGbMjz24gGotWdHQRLiuwxaUw8xSkJ0yMckZytrUoz3HBl5Ny0dR9Akql39QWk7ycuSUVgzVj7khHXFGtKcMONP6gEqYVSmI0uK42BmwtyyUZOJW9pFXeXdbIQa9j64T4QVB4ZU5PX5Wwx8ED7TUwjkXb0GG7SpZgxZWTa+WFCwzvH+o4kDNfGH75CTTXXl4ZLzn98aHeKKOrUDdeghxyqXON2uAg9FEwnI9Uwe4Xnh1VgKSmJ0rB2V3trHJTgejQwKJ7ZcBkGpaMeAlrYXT4AWvCMoYMnCq8SPXHwRBU8X2jhiSqOTRkjoJ7NGCOggU0YI6CRzRcjoIlNFyOgmc0WI6CFTRZH5Ea4YZPFEKphk8UQqiWTxRCoI5PFEChffBYADWSyGAKNXLIYwkxcshjCzGx1TACzcMliBNM0XLIYwjRkshgCtWSyGAJ1ZLIYAvVkshgCDWSyGAKNZLIYAk1kshgCzWSyGAKF1xO+PflY9m4YFJ8oC68ofMtnrCUzaBCoI4+mECi8ohwxUXgCkZgo/M2UMFHDhNZ/nj3+/PaKUVndNaisf7zrc2NhKit4Lp1kgMzB5WQnaTyH4NijLiKnZ4+6CGhgj7oIaGSPughoYo+6CGhmj7oIaGGPugioaWh6VCYpqhg9CkG1ND0KQXU0PQpB9TQ9CkENND0KQY00PQpBTTQ9CkHNND0KQS0sPQoJAA1Lj0JA2WeiEKhl6VEIKPnuCsL0JD0KwQwkPQrBjCQ9CsFMJD0qX5PGSiwmnMVKrHucxEq4KJzDSnhTnMJKOH6cwUrEKJzASoRTnL9KRH6cvkpsUnD6KrGfwumrxM4Pp68Se1Scvkrspnv8VeQ29vTQEy+irxJHCZy/Shx6cAIrczzjj1LAA2YfsQvezUlKfJsWh1msY4yESRFfQ45QWUeR89jbzaLAgt7m9Wiso8iJeqEZjAI5QMgkE+9QAmwilAALDhc1UkYQPI7MPaoMQYEcRlmto1iem6qkQI4kwXUU2XJzRiw2Q81ZbBTIwpxFYnk13NNqq0CGrCHi66yhpiziy8xyEuOrjDSFyEuMzV7iJZZMDF9inpsufIVxTjHhCyxSWk2Gl1jQarK8jIHkso4Bc3uE5HlgafD4ekqUSSV8PRVu5hMPjE0XvroMVzMk4cvLGErLuVHILJXGwJeUcdSUZatAhuYs40vMcC4x42vMcG4hBwUypmd8zRnOj+ekQJbsLLNpAw9QrgtDjnaOOpP22KwjZ930sYTCiNAMobWuijDMaFXVQEhjhNaR8sGlX/Nh1GaLV5z3heoPhegLmzkpo+K8L0mZRlt6i8dxpyj7VLLi3O8hreBvEI/HdEjfH9muYHV3FNookgtSTZrGKk79IpijLcNfYhl99iueDfCYlhU9mtEJJDocGxI6KRIC4nRqMiIiGL7WGm7MplGkFzAjMIbPL0gKMJZeHM1Fi8PgMY+0MqPIjoAKV6RHRIVHVuH2Mn0nXTkuQCuKvImolaIrfjUupW34lIYkpTV8TgOzMEsvw3iRVVh8FSZS3/gD/UwiK5Iq4kxGPtcjYilSJ6BVZNYqymVWga9CQzpnh+88DblxcUaRB5Im01lF6kcEI2Id6XydVyR/MKtzQZH9EVVAhzvjLrJhom2nIUOJy4oUE6jzosgEAf0hUZ1fFk1QdolQJcmOto+EuDV+nKjfb7uIJLSCOIthpG0h+Nz/sH6k7t49msnQeezgiqQ+3j1iyUn3oV1PoBHcbS0FqH/Q/O3xpZ0uJ5/f2l67XiM09UuKFBhU1KLfyu5DSyMRVpyDokiAYTIGIiGTSGiDDT+PDZ/moaRRRKfIcIGj9ooMFwgdMIXG0eFHDCiMAiVFNggcbFZkg0Dogg3fjA2/xzMZBLKjQHjl9mP2AxtstHyCCUR20Oib0cGzQWscMfApHnDM2MoZtxxFUgSUEAs6o3E/KhIimIQJDzmk701YxBl1a0lZglAGVGQ7wCErsh0gMhZtRmNtwpbM6C4gJUVuABxqVuQGQGgs1pjREJGxWGNGXU/GY83xJIwNNltFugGExoLN+Hkmk9HmqAMRMSgO/OCowXAz6tH6dcuQUdvRGNujewyMt4wdC3NRHAtN+a1PhYV+/dwgj0np188QKv36GUKlXz9DqPTrZwiVfv0ModKvnyFU+vUzhEq/foZQ2dfPDfL4mX39DIGyr58hUPb1MwRKvn6GMMnXzxAm+foZwiRfP0OY5OtnCJN9/QyBsq+fEVDDvn6GQNnXzxAo+/oZAmVfP0Og7OtnCJR9/QyBRj53baROZ4lLVlsJJ/O5alGmwmWQJZn6BTeoBLIkWI+HwXI9raYsuyX6xh3Sv6Lwjs9Qi1ieS0mLMxS4jLSIE9VUS+XEJD5NLSoz89l0EatwqWlJoa7hcuUijqHT0NLQegwJJO8sSuSUaWdRLq9mMupsz/FpblF2Lq8t6jRpuYVKDWRVc4YqVKHy5pIGfKPqkFCF4rLZokRqZp9uTrzTJc9FNfAZbhEq0Gl4ESpS2XFxchKVHBdh1Dw95RwXPmEuaZJgIJgxNwZSDsyYHwuWy9qLOAr+nTg2beJaBAxqZpzOakDagRnzsUHBsBOVkLkMuyhTUVPedMr8WONC7EBuq/1y7FgDcsswEspwzxjLFLooUt8YX0V2/GFTlNLz7+kcJmXgXxmC44+8zCBy4g+JomYzf3gVsQr/yg8bMVHTYhI4ZMM/x8Msi6hxcUAGZXb8uVaaM4KjcDiPiliBf3wHjjjybwRB5ESffcXhZ/5RH2hKhUfGhk8UsyCBDX3+lfRKlLKwlFqZShbc4PnHhiAw3/BQ1GqkH+iBMib6lC3KmOkndeDM88WXsMEXvvgSCGzok7ak1WLpk7YI5ehXd+Bw+XJLIHCg3+NhJlX44kugxIk/z4vzlfnzvIilqLAEjdg1igpLILLhz/zC+F2jqLAESul4ZIche/71HiizgmgnajbyT+nA8StqKoHjVzz/A5ELf0KHCkw5pgrFHhkqt+WIIhSHU3XEkC2PHJCCU844/rwOakORvQC1oSiACyJH/iwPIiceGdRz5rUB2kbhz/JQmTNHVKA4IGPaIOpRHE7jmN+wlj+NY7ZhHS8zqA3Py4zZBlF54nA4B2WO9OEcVHPiRQaRMy0yqItCn9Wx6XMNDYypgqg8YSmX4fh8CKZj5+iUAOYwiHoUnI8jqlFw4c9F+hwPAidaYtCO+VwJqONCH8UxVfiGTh6AwIYGxlThLa0KbPK8o5MHoMSeBsackA/86R8UOfLImBsi+pwYy82foo41aMuFzwVgeia6nhyQMZmJrieG8/fB8sigzI7PDGC2QbQ/MVyQCoqq1qCeFRkYzG8wzVD2PjRhMitq7oLIinttDDkq7rVBZMOfd0BkRWsUEJlvjQICe3qPDwLz+08QmN9/gsCJ3huBwJneG4HAhY+tGHJSREAQWREBQWTLR5MK8nDj9z8uF6+Lz5+xzu/+Gp3fnxbr36b3e9x3AszfBtu9j+LYIRz4qVtshmDgx20xDsEEsBlB3FXcy268fF1kSuNtkPdFALLQbi7xMxi/DTZtHxlrqo/VD/ZsH8F0uP6Ilu0HU4vfhru0j0hn8BH3blWg6W0+TC9QwRKTORAG2btUAUQOecwg8UeghzVcn5+IjZWangRiBkJ/mXY29fGCq4VZgLZh5jYmzhqtInr4b5d1YD+s6ToQHz/qOHwAqeMEyh2kQ12jfFY6x1zUaP04AfbbRd3VjxNQB8rUgHve5GzAbri5OuKrIqdOvMv6wXqqSsAbqx+sp45DBZPeVgHSJd5UfZJ2c57yeLclvK36ATY3gLRBuW9KRSDHEGsnEsNX7Meabxe1Uj/IB+kRr3YTfR02XNRO/QB7qk0z3FAd9ktVbXrtvuzdfEYjId5QfRIyoVVPw0JahXdogbB8H1lUxF57Vw3U7lRa9h7frRFOzxc6clTNNOARiFicwbBjRmYmWFZWxDaDo2NnXZPw0kkNocmg209jXiREVmZIo3hESvuJiuMmHzIPmwGrKnT8RKSNDQ+bRzqlE0Cjw45kfDrUwkwJ6ZkQHR1HT6UOw53SIam9LHUa7pdOSD3cHx0GiuMrK+IrSwqkYbhTOgyLSAuvrEC4gdTQqMBySIaNp5CslkatmlNyCpzxMVOLKVrOA6TAxlXEVBOVzY6OW/8pKWQebo6O4gDrKcHrKREuNTc0KiBrxqNW2qsAaVxtedg4vhIykZloCGk9D4tIGzQ7luEO6KNAgnxhuP05Efwu6n1+lM8Dtonv+KTAFIb7nsOwgLR4detgcdPEq1sHi1smXt36kD1AZPU0KiJrUET84WbnuK8fbnQ+hpMJo8w0KmKTeCQiFpDBa1gnYgEZoop12ivBjpulIQpZJ0G5bqSxOZwnh+TlE+WYvIp45L+N9ioHI4eAlPhEpkdMNPO4FrFRIiZZQl6CvBAsIS9ezDo0hIni5axDQ1goXtD6cL6FpPU0LCQtH5n8WE9yNDQJQInOE0LGmWlYyDbx6BQJaW1DwyLSWpQVlHecpViAHhOWS+/lAw8gQRfXBuc9TLIwd260zTiY5G2ApWoDjwvJy7Hr0vGaz0KtZy1/u5vst5Gm43BsFZCKknJxbltptKc4mI60gC5xlsQRtwHWgsP3gVIwDCNtxoc9g091z5BGOowjs+cHZs+NtBkflNoHwp05apn5SHoznEPhM+EccEZFYHyZ4/PqiLSeou6FRHoyz2fY6+4H7yAe4zCQ07GdQDeGcymkU1wY6RyOwiJODCdTSGfkMNIHfNAbZEO4ME9x/lIhPZjn4ls+eJtYkMes/ebg0J6hsPh87j0ClBMTFMl3gNbRbxtOMu0aiRDulbsyVMOKjEcz1jMcGjtta4pcvCBp1hLaGrZ9OLSrZFdFVKTnAYKOIfgZe9wIkGgMSdAIrA1HbtV5x+JTa9AbFp4iRh13sSh8ZO9HIBeKEziCJTxozErOYjPeppzaC4LaTTTvXXBKPdoGsoVjjSzxW81mrFM5IidrrSSTI5GuGadyJMZzpsjCQo4zUQTeRNsutdayZ+GJ5rC5rhU70ugcTDMmwPEQNI8cGWnxrWb2DC6RtrQMrqevAiPAHzME1WOfZsXkjby8EG66GNeNtEXXHmnsSJ90NC0M4RJckMTYGdHqPDH2QDQ7j8d5u7DBeWQsi2hxHhkLIJqcR8oC+KtsSaNJg3TV5uaRsqVCX5EjuEyH8xAZ3MsPcJf2OZfOEOGyVuci7oXtzo+4ABO03/IcvMZI49WoiKbnh0sXTAv4avOU9eKrzVPWi682z1gvQRzxjJXhxBHPTFuPOILdOgG7W6IPOqcCeKFxMwZHMsrAcBLJYZ0BO1tr6Cs3TNpMS5sRSyiXwtqxDuq6LJMd6aMOXhBisJalO2GwNGkYg/Vsjqm+/7I2KIAA+SL7RhaDTewjWQyWftGCwRYF7EhDdZDnDMmHU0aY45bFGSPM6dDiBTakQ3IY6cCuzNPZ0T7rmLTIdhMvs8FkCvo92LGLbGQTixNEEmW18KpikkYWL7nB5M4sTgxhUn0Wp4kwmcl+H3Ywj+oQVM/n+YCnD9Yr8ofA25l+n3bogv2YZA8IWajfwB3OIsWxHu4Ps+ex7t6TeJDz21iH9vdu4S/TL6/D9/TbwmaPi/l6uXi5f2h/mn6dLZbdHz7Olo9vs/X95ndPh09/ni1X63u4+ubjT+3jz3fbL1itp10Vz6b74cvrdDldd99z99f/+K+7b6M94gdH425iNHzpHsFmgrZ2T8Sq2AXH5y6Ad3I2eB4XeJdluSIkk2Dl1Z5GOtiDGSKHoPbvAZ+mtbbI7qNfGulkj/gPN+w/eiQXBG0YrMdoAcDsCJhhwA75jtHW9Fg2BomReEkRn4lQFj0Ni0Rejp/SY+9gARLnp8Rm0Nf1GCnAvO/r5sbxlvQDAaXHw/iO40nEYv2xxsz3PBiCcRMH7YVk3CQyNOKMG+kevbpc8AIqKRMBl+PdpEDGxRTIMycSFpPi6t8jKlZc/QPv4yzHt+kfNTxU4DUVJfs4ir3P+dJfsV7Mt0+vAY8b7vv1QX1SD3jc+J5Hw1c4k2ZZcfEKPE+2BHko2PpKr66YHLXHAQ/VmMZJRNLpqOqgMn81hPinXJQbPcw9lUZH7RW9U6HfYQlmWyy72fuOV3OftoRt9r7nwdDF5KUp5lP0iGMqfIoe8UslKXdjmFsi+FJZ2OBUz7UEXypHHNc1NOPXANW8CbbUIV0PSWt5Zi6EyxcqwHA9z0gFHkw6ophOyoy88WJ567iJx22Qzgh8tV9M3sIzcxFcgi+VGDszfPnfKPSIsBokQELHM3MhXM8zcyFcvsivpNGoQQIkTDwzF8Lli1dhuHxBxQgUOnBWwfhF5LUKxi9QQcERXYUCY7HWXXxArON69t7FAH1iiVI7gbFeoveQZ6yXKLHjKSvLPDMXwkWb3LlC7Oucgu+LSEsU3fGMNRBFdxxjDUSTIsdYA9GlyDHWgLOoJo6aN3y1OWre8NVmqXnDV5ul5g2PbZaZN6J/kWXmjWhgZJl5w+lUE8PMG9HIyDDzRjCqDDVv+Hoz1Lzh681Q84avN2raiMdjDCzxmoWADcRiY2DhtcbMGF5mh5IVZ08wqHimkUGF1xhjsnizI2qB4RV2KH+Adzui3Bfe7YjytnhxHSo44LV1qFgW8RXGTBlOUKJ2CjhBidrY4L2OqH0YTkyito144RxqlxvBJuSOOQDjfY+onT5O4aEOJnjnI+ochRN5qGNf4p9kQrCeJCwiR2q8bA51/scJPFS6IvEPMiHYi2/d67CFfjmJ3L5k/kEmcpmRzaXSVpWAV8mh0o2ZrpaPwdJtXDBY/nlmPZufowIIkC/R7zwh2Ey/84Rg+QeZdW2WRgE0Lh/BXmGMCK9/Q13e4cVwqLvGwj/IRK5bCl3mDZM2XgpbbyueLuWm1KXln2RCsIWk8gIbTY9XxGGoDR6neDBMDI8zPBjiiMcJHgx7xjdeWwT6rKZife74l5kB6bTeRG1xaVBuvrlzRBrPK/gemD609O4g9XM3jba4NKZhDeOjqUtKvmN0rKQKCrQgqVe+uAxQn3Nvgra4NKiJSDMVAlAv2Bu+4XMECgZ7hgnSMPIWbdFqTM+20RatBvENffsLeaHTdkyixM6zEh/X4Ebg+ep1sVxPHtqXdQW8yKumGgN7/JBR7CzLXccOOHaSsaurvccUweUW/X2PH4JLCvole/pgcrQ+wQdVVCELLm4kDaJHEhnFDqRB9IgiOLY4aT16yCiaJ83LOQU2aBCOWHKG1TCx5CxrGVEhtzx7xJJr2NnLCmx09vC115AK9vjSY+3CGx5anDqPLzxLzpx3PDQ4cR5fdp6dOHzVsS7TRx5anjh8zUV24jIPjU4cvuLYHUpoeGhRuwFfY4k0sICvuEJOXHA8NDhxAV9xxrIzhy85Y1htR4Xcslngi844dvLwVWdYpxaKQm7QMiIR6ViPGY0CW5y9iK88w/rM6BTYqIY9S1CADv9cyRvHns1jVDaUAuGTsqEUCJ/Z63UosRDpXqBQNhbnmgQmGcsVjwnjYTVZZZ8qbNJwtsnhSrie3yQbNLFJIJxpEuOwnFFX3Qd0PFxrpsiuMZxrsr9uhfwazjVJlsjB4lyTlAlps1G2v8J0nK2y/RUI75R96ztngWiHb9QUgBrJPvPPtgNQzdgzjZosI2/icSF5yWpNA/NXXzSFvhwL1YrhnmjRFO0wkqGf1QagRYInmjIFwVarOizcGuuF4YwUyvCFr2eE6YOvZ4Tpg7sy9wP6qK6107ok8uVPIr0ZUZJE2snXJYafmO7oKgGQNnygq0wff57M5qt2uW6Xg1dVCdlZhMZorsFyfVsZGqu5QBLRHD7uzI7bay6nMoZ9XG+fp6v15G3+1C6fl4vNf8e/4lz8T/uaR7P569v6rvqNEddUZDWVNPdi4pxmzW2ViFbwcQdy3KbR3FZhFtKjqqAW4i+zkA9FTEY0ZVhNEevUsthec/cm2YsJmts2ES0qbq1EMM3VHWpuGZ6ghp2fQltyc5klWzwasoZsNRd60oRaxYUeOJ897gqodHuhzj2sc8/qPChuEEWd43GQDQdWcc2HTmdWXEeKKqAXZLzMNhy+HtlN2ocaKMPQiYW2iktKSecEsSWNg3nF3SFmaI7emJYLbSNqLhRFzSTNFaKIhgdFwwYSh+9LDbsjYggt4x6T4bA40tw8vuc0bNjwdAjsia+yZYLqYsbdNMFuMWw88XgUNGwY7LFdUL1fGF88+NTclnpKxVZBC/ssHsmIhUDRrF3gEmIhUFcUPnJZsYAXUJG47XWpHQ0LZMwDXkJFejlQlzbQsJC0VK40RC69H/BiKrEZysmHQPcrlYAK+zIUyWWHSK2wWLgUfIh031LIL+CFU1JklEH3LcWk5bqzFNKLxUBXPg4RweUrNQeP2ESiKxRj8mYeF5JXcdVX7VkUUkPX0w1A+5+Q+I6DkoSWlxBobhaSoyvSYiP3PC4kbyDfw/Q23FHYovY4LUPJ4uP5JUhAxwX0snierdYbsR5/aje7x2X7b2+b/44Bb1tg7f74/vPsZfOJ1d0P//qXjWBPbbfHPHzB/O3xpZ0uJ5/f2k6pj5uN6bpbJz9WBcuai7UAbZR75JfZcjHfDngQV5qH3GiuwTApM55h6d1RgdgW00Ae14AjrTuNQ3rNjRk48KC5lQKxI6bUOK6BhCGFcaSsuf8Bx1s091YYdo/JMqgBO6qBHpNlEMmMI1nFVQ04XOKajsb2kAKa8fGzgQyAjIoLI3DY2BoCpj0rLlhAGbFANLofiAQNhfRqscHDUGShLWdQcVwPDlJoGAfyiusNcNQBkjGNy4jFmzwOlBTXROBgVZl8EFuVycewDRZ/zKj7iAaLP8aOIxE5e8eO12nuA0BsLACNH3uiISNQTw0ipCohDw4cDEHj7qjHEsGPaab81qe0aAo3IXZ0SxB7HJKBqShjJ9to6fqUSGYo4v1wDrBAYiji7XAkunVdWro+JSYtXZ+yniOKeP+bGIeBEltDEckJRbzfTcx4SijawpYPhKTF+90kIoEViXY3krhV4yTa3Rxwge61kWh3IxlDXV7P40LyBo28VSS+eVuwiGElHleQMGuQABstfLEyZOSeb9cGycu0tBFwbRXX0q19MFxHt/bBcD3d2gfDDXRrHww30q19MNxEt/bBcDPd2gfDLXRrHwiX6GrDTFswbGsfDNayrX0wWMe29sFgPdnaB0MNZGsfDDWSrX0w1ES29sFQM9naB0MtbGsfCJboasPMF07OoNwXTs6gvC1OzqCCA9HVhpqywLb2wWAj29oHg010mQ1k840zMgJzVsAJGRKLoiotzs7owVaBDA2EDBvnZkRmt0zUFonDw/YKoPFdN15TJDHHI7x7TWLONElRz8Aixpl53AYxqkI3TYfkzY3m3F1FMnT79QB0mYjZ8iNHNEpWDonHRLJFqKkxkyXKvYxflz/w+raI3Ko8RxUp8fUoIIvg29JjI6epS0bIjxdV5QIroRk1DUiEpDlK4lBVxQpEufwFJQSM/Mxi8bYW3lnEomItiQNQVSQQ0WiukjhNmeVPiUjlgjf8qilKTCEQM6bU1BiW/mQkJKshgIlyOZZMJcrlFWQqUSw9M0mEjBc8nleaUCKJWqJus4JVJSqi6B+06/SAci9G9WCMgrkl6cFYkqslSuUUXC1RKq9/Uq6cnaAlbYljiCRpS9SshsckSpVJdpUoVSH5XhIQUV1jdHeVrNG/N9cZjrUaKpgov2MJWqJavYZGJsoVWLqXKFfUULJEuZKaOiVC5gveeSttqLBUMkm7RGkMM+6Gnbng6bVOFc6y5DJRFR9KZHQJgPXidSALfNpq8FOnwe3/v/tj+3U2/8Mf2z/8z+Vs9bioS86/DgbSRMnxr4OBHEzCORXRMtImRWK3CpRp+aBhF7YXL5IXSZ57I2y5hFby1Cv86Lh8VsLZFUw6K3mnyMZXgTz9RBqatEDDQsOOYEXOuCsf4VN91EnbDlPoN5YI1kQ8ZgWrSGjV0e7abDfGcTvssSRGUN2g5nq0iBEcw0hn+exsXXvBaVtoQg0pUvCaHKhkNUSLliOaL5ikmvZ/KLaqGSCo4azARuUumrSuNHtR0wcQlDQaTf5WlNRq8rcimlPUkEXH7RV1WlHsoKkBi1ltjJpkrqjhpEnBimhZUXUV1WlR1GAFsVOjSPhKSkiGL++Kymk1xV4xu0pOgY3K7RVJX1G/QVEgFdRB5Au5oipIvNQotOYRsKjdwtdVBeXMmofAkpzZ8MVPUTmtomQrZmDZ8dCo1JpXwaJ2A1+ZFJUzKhLhopyJL8eKypkV9VRBKyg8NCg1wZww4662GE36WUSzijqs6LidomIsiu01tU4xUyhBgY3KrUrSi7OXFPVjUUmzJuEtSlo0NVKh+cpNo8DGtJAbTbNMFNti2ZQwmM7KjVM2FBTmKjeeTjU3daCADZDJFuUGzALGMKy1ROdQhUGCNW2ZhF3ukSi4HoTYijGNskOZh6rPZmPofKivlh7Nhs8NSkjajl8eKoWZme4mRcauz5cqU5iQdsCZ6HzSy7iBcidNFjIjXRKzyRrshMldNDrBsK0qb4jphGh60svNYXNJ9EDpYYM6cRqdgNiqnCKoE01O8Vzu+lxGTd4OlDtp8nagDaryjZivsqp8I2YnrtHk2jB9O036EYS2CmhQI6rsI4jtFak3UCNBkTDEbJvogWLJ5c40RGF1nRXpQ1DXmswkttaJ3ihsKPOaPCVmIV6RpwSn0TuF1CC0V6TsQIVospbgNEaF1KBCkkJqEFqRw0QVoslhYu4pNJo8IWYiwWjyhJhKgtVgYx4qOI1OMCsJmvwmqpOgyRqC2FGDDeokaXQCYmdNDhHUSdHkELG1E1W5T2zNR1XuE9N3j5NC9dABE1B4wY59ClPIGkW6sIAEFHTNbsDsE9Ew5ZBxi3VB+dptEpIqQxMx+1FlaDDs1GgyHSC20WQ6QGyrOR2D2KqzIIjtFUdYEFpzFgSho2KnD0InxU4fhM6KPTMIXRR7Zgw6q3afILbR7FhAbKvZsYDYThOdQWz6BlAIAXhBj0P4FICikrPvnXDLSVTyOERMX0fia5RKSEXJX38f5fi8lkZ3VSwqsdDlpoSRF7rAlATkdDenqAb5mr7e1gUN5FsKVxD5+Eo3knyJYyecilfdppZM24sg3XGlPMyeR9+UuyGw0jS08QlAfDM839SRLK0oAai/Hp6my6FHc67Ul3lpPD0ul+tIQXkL7xLyoK/02CGAXUyc26PXpU0M2r5IowSWPw59/LB7PmZTBaZrEgqT06OFIMrbM2xc3WgMvxhcrCNZZVh0UN+NYhxdfMsB3RSK8Twu0E6h9Oggy8XDotv51WzbHiCrIJF84H/Y/DqhFUfp0T1kuUweFiuzr7Id0OqgmELDAq0OiqXrdgombhWLpa5AC7IKJ2E/naaO48D47w4w45ZrPegDj37fC8bG9xSRFMZvmVw9/Fv6jb4ExJ8oXD38Wz421IFcQ4tk61HG0WcGCchq9oC2Hp2ZJiD78dWXsuP7AktIASq0MQlHgboGTPP1cvFy/9D+NP06Wyy7P3qcLR/fZuv7ze+eDp/8PFuu1ve7Fbj5eVdCZLZuv9zVuztt0Vfradfhqel++PI6XU7X3Zfc/cP7r3df1M6nDy/t/dNs1f337of18q39tB3EfTeI1/bp/Ju/zpbrt3dvsFff+19M/nT3bfvN861vWXWfMd3/LNun96ZUO8XNNj+VYL/92P39scbIv7Q76Ssajmx3Jmmq6KUvAfFL39b9GtPixA8i4U1NwrBInl/6AhBPC7Z1V+v57uASkqe1JADRkU0C4iObrXt/ot3IQUsCUqa1JADRkU0ACnxkM/WA1CMyIOensHsRYOoRKZx2O32Zfql6/0N212zvClFP6fqHlq3vzJ3vrArDLxNJSfQykYDoZSIB8cvE1J13j6EwVLHhOGFn51P73xfA7UkA/3suzOZtmF18bZfL2VN7//5IbCPNv7d1ukwJYk/K1+lqNfvaTl6Xi68bqKrO4onOiO3AqZGnreQP06UkKR85BYOIdOSUgOjIKQHxkdPUY3BUuAQBiXcJAhDvEgQghUuox+DIR04JiY6cEhAdOQWgpIic9RiMty05aklAwovdhEOesPwGblg6zWxc3uPPo0cpwsOleOrhspHCeI/GQftgX/rqqqIf1/GX9mn29mVsC3ScAdNImIG2esEweu9Gd5qfbLT+MJu/a72S1/poHTV76DdG1hjAtlXyp0NT5W8/bv7/6r6T4fP0ZdUyVnAW53IUrYA+rEo65Q+r9S1Y4iNuHYipZ3IwvnTLyz+b04kvVpr4bBTayTftHM+XRSNqx17DOWbBkeWruN4kodNbKGH9BEnKh7fPn6uG4j8uI3Rmym4bDjWZnz59nc4f26fJzsiOjeZt03Tj2H3iOIOvL9N34R/er7z3rrZpqn3pC1EA5xgX/sZuw1x511CKuDDoeCEYV1bdLwsWX+jYUz8RlYaOPQKQucYKly5Xi2ZjG286sjVnJuokEyVaNh21E25ZO+U0sm2cm6wefw3TDJJp0nt0YQFFffAJbPA5Ux4Tjx6m680vfx0PQ+38eTZvJ2/zfswKQhTqUe7o8Udq/Pks9VsiMfzVa7uJxV8WT28v7cR9GFg1Fi83f7mR6uvm2+qfqqsjK4JyuOWgvAnBZ2YppuRLUagn3rJ68vmeRdLORnE0NScKQApSp4Bk6Z2GhKQJd/6mw507WxrGypOvz0QJVPcNZrhGDPUiPE1FkGzjgijiuSgaz+ckE2HkvQ/Nc3c79ctPbfvy8ZxWCyQP7XQj2/h5rnObCufobzp25LPJsI28QOg7AMHajIIXJiDxdwASkuaoZG/YO75v/c+WYhBn31wlF2UlV2auctowInxQTK+56ek154c9OzC9PKtNALoglBgmlLwHjtMRuobJEK5W7ZeHl9n8efJl+vhTd+hy4wFlM5gvs8fNlL2+dNPU+3shrpis14jlNNKcn1ENc0Z97GiWy8njOwNz/KD6vj9azLvx1HKsgjo0ZxBzw2H2PaieGaq8ESV6cB4VZG9aQYY4xG4UxFNCBSCa2NIIQDSvRQLyfJxqbjpM2XA29V7eg1pNHL9tBZlzBVkvKyheYR/VSNsom66xS5PhWbqStIqKOuI2XMB1557dOyLgviw2prFYbzTXy23Wtx3T5fNi8sv0uX+YDUKM7b28obccpAbM+ZbDFkIDhyTLl9m824k9LWcvwLH+8LHPb8v59LFFdh7O8IG1uem46s7PAF72Hc4qNh7N723j4YysILZEmOCfHP02XtjA4P2I9/sOCYh7A++Hwa4RJcSjvMtXQBfzEK7wG4zbTgP58xAW5CXgFWS5286jWH/uIoqsH0NuYYQ15K06gpM5A3+eBgyeCOD7EiHD97mrddu+p0zWUKj2Tj18MolkzyOAt+yFRGVc1T3cNr2Ca8HzAfm2MyXOnM+GnLT0gdfPbSdK/LkzCgP6ieR+RXJGSfFq3glYNP9buEXyNP9bAArNFTYU4h1tUPCn/U0HTHfuUaOc7ew9WSWv3cVbd/zhaRi0sODVQciTMfj8nBYjlUb4IN5qM2/T53Y0KPcq7oxdYgSFq/W37WrP824xyWZMlkYKadSKWQa1ZMW0wxVITfwTVwEoKs4Q8aZdYjxf30kO2/EapPAo2VVUMB3CTWs/nG8qo3zFEK9BdAii9tlHN9Ia0j+6iVxsiueMrcQwtj5PN0K9bf51+bzcBJmnfcHh4dA0+IF6iIp6KnjgVBLOd+Ex6MN1xa6GlXPy+d13nnxQUFLi43i46TgeKnFcvluOChJgvGn9xPMLnDzgHVkSoOC/+DoAWQCiKYASkCIu5puOi+l8ZYgPwDd/fY24mKW4mK7B/0siuoI2kG57bi2z50ks+09aQ3ryX+ZCcDrn/mVmV9L++XXZrlb8xuR9O3PWPWH3GSemcpOeBJjI/dr5qk6J3a+tXl9m6zWwFdnrsfoBQRUKAmC+6RCbz6/YsnyFlBX8v3TT+kmF2aJllv4nOKtMs/+McJ+fafqfiHSNMFikMNir1EDmWo3I2WLKIDQ9AX9XobXIyRy8EEIYMTJ9BClkbD07EWwfTaER5HX22n6MibXIIVjg6DOtrAgf5XfmHk0jX6gU9hGrZHCFfsRqhPvDQj9iFZEcxVMy23KpRriLvEqJAyNyiYri1GFumyyTz5OFRb40KdcgKxuRKVaSQv+3TeYqZ5t/Y+RjX2H51uKy1BOuDUdX2vGBP44wUnSlfg+J4cONdMwLUnAyjZ54bUjiUj4/AZdCKmI8Stea54zxlkyjIFqbmybmdAH5zCzFI4xpFExrc9vMrlzZxJiBetCmqWuOpWALLsvw/cnqdX83SDQJW0SKSJOmXc+werHmDQjSUcntMIKAkTk2g9v3gzMSD8o0VPc9lwYVZTQsZHfbkf38UGac6GDMNSgERuKmGHONspeyrRhFqRpz06Q5Y863NfJrfWNYFoG4kPQ0AsNx3Lpd2tkIqcovRxvY5whErvmJzVTfkrmBnVB9W2P0BIOd88FX+3m0NAzDoOZiRwj6VT9f1bSkOXlDaBSsA3PT9EFzXpzCuEZe0Arawd86oF26YzbnJp5kBbG8A8njWZp4IG20LM08EJGuEk4lzpmx17i5N1GEV9QsMDfN5zTnRQuMFy/0jKZogQm3vZ1x58Heywpi6QfiQtLzDwxHi+z2Lmf+PR67Gb7/CxGwPzRrPJLx5Ui96+xVC+r8zsbq75a43krv25gzy0jse7t32cA3h0N/K2nKy5pS3D6ZmyYIDm1bnIKqYMJt7+vOz+FWdv1041rJszmerJAFJJ6sICGpK6YaialnHFsXXBTuGFOe2sduc4O17ukqQnzo/l43zh3m0ThXCutsv7bLX9c/zebPY8H3093ibf36prP811/v3/3a/efl4sv9bL7B2TcLoiJe56Y/3dnuD56XbTs//5OBTRDd7VacWPo9U72J5waJftAkIdHdbkUg1l+IQLS/sEKinO92KyKxWSsRiO3ZJwJFTXcRK/guouPtXufCIZV4JL3XuYRUoH7godmjIM7vN4rMp91F//of//l9NAjfHl4+SV7vdN9/1k38H7shLt+2Su2+9WWrx2VXX6r40pgSuwtdk5vgTSnW5I6x/tz9evNzbFL2qdjSNE0O3u9//9D93uRsXbAlpVK6W63NabOkGGJ36Jy+A5TcuM1HwuY/G4N30brGxw1A3WAC7coEywu0K5OAeFcmbKJ6D8Mf35Zf2ydxUe0W+sleINRRPYYaXBXU10FpFyeNmW5LaoXASz9IFoHoCO6EKBfYrKAEFOmsoBNCSiSygnmLdOJ0Ux3X0rj2I66r4+LFEmIVtr4oiHeusaoFU4dll4U4TVFT0sQJYAn0K51xdDgJGiu/TAQP2nu095H+dIZzqK1xdrdQd1O9Z3zDvq/sB16HMYOEo1Ow3JeyDmhZOxFUlxw9CYIj7r1wG56E4/DOMiX1tdZ73YZoL4rwdc+T2CpCogbo/bETIgjeRHYvkgREdATcelUvRJDeq519RbTz48O+MIr0msJkmnMtysOuABEIZ1zFYSCPesmts/CQ8WfK+DfY+zkw4hxE2iaEIJPhuJCqI6773N5DkBFUx+ixaI7CXoiIhd5PSTrsvUKAYiumw2I5q2n6VoPgOyouYlNUvCpKypbee6AwKCWnWjZciDMPrp69KWI6zKw3k6QroHTE0rZNw8xwTJxVWqYt3c6z1bdFtqHP5CISS+gVgTw7sxIQF1GS2c/C2TWfqePz8SUKktIbKhEpU2M++pazMbs6fhl6MX4CbwXoulGbRrX7RWfLsGksScXGsvYpATnKSRRyqnBu6SRtZ6q7Uh89RlgTWFyfIXmjcgMo1SKxJtELNAtIxBE+MrosLC6mS4Yc56u4oY5rWNxTPdQXJ9/AR5op65Qbwox5KevZ9B2o2cDigprFn/Xb0QXVo2UN1F05gTWyhj/tb3e2d9n178wjJVukUZyX0qjjFw7fiPh1g+lRayB8R8pPNEPxoxNMdA5x42COG7lnR+45/MDiE3TPcWVEMo+OBRCcjRGY+OGy7oQqDx+/4GH2Ip6tkSCFDYKvwcRLnL0Rma0STuWgorCnT16SNoPu+AvGYLwcfmqYyUokLKhVfO+YdrNlIdsvNG6DGFdo2F0zJm+gkxahnoC2DJEgMyMn9457rx8a6H7HBs/hexFf0HBgd9GnehHkpqkHpxZRXxkhKeStIxE8q8iMvNC40Mh7NIUhNtfE1oWNfVLS//6/7Xr28of/085/bpdvT/VddDTgFzbX+kKLfaHx1/pCh33h1TTq6YNVkK4LbZ8OgbzTPxxCioh4XLO/LBZP7fGthXRe2tbWepgupcVAlJx24yPOoHwOl6/QJyFZvh4hYlg+D8uXDH2eGJDPgvIFXD7HGWEcNcKEk4eYnU8KLCwU/ml+BCgtS7eTghxNlgCHXajNuiU3PZm7CnPknocoIsoE/mx52DoQy7rANhAZXlmJ2enlwMJi0uIbyLTTgocmP9G4CJfSZuLI1jDyFhoXkrdojmx1JKPY6teRiENafax1Ey2OxkUYqbZ49qkGKC9dVQqUN4J8GrclfQR3suOto+IrytZXVD2XitM1JtYzuPiKshbHdQ2+omzD4OLry2QGF19tJjK4+GoznsHFV5uh5g1fbYaaNzyCUdNGZEAYWHy1UZNGLDYC1sBrjZkxnO9ByQqvM0axBt8kMqjwGmNMFqd/UAvMwAuM8gc4BYRyXzgfhPK2OB2ECg44G4SKZTgZhAq9OBeE2Sk4CzJ5balul1wdlH0JDZ0TnGWLJ0DHBEeU58mMtImFxaTNfDqmDoTfPWd8Y+9cw5/s60CGlQ85IDi80kjyzLAdC4tJS7AVd1qIiHG6QON6xDpdpNmVmLyJxsXkzXSKwAvmWugUgYCEszcmgkOqm6inn+6ezk3dRolaHIK7F+R1NC4mL76mnCds1Ctvq4JUKNh59rYq+JHbDOcTfz+HPZZ1nr27AqQt/N0aKG1gb7LGpQ085xCWlr3XAqRV3mvJ5ho8f5OHjh+OV45xBTiFY1dBBvMEOIMjNESwwukce9YFJm1hYSFpI0tClOJhpO+yJCDLMtmgOIWXmEgNYZt4iQnhckiQNrCwmLRo3j1vX+2GgpxOe9wKhBqWDyEVe/3kiBoUuT53gu3zJMSMLFWirXTyhLxcgYrjm8BzPdeNLvHUxPrrMMcXrBCRPE1ii9BYA42bEVvFeRgTIVgJ8qKv+H2qrlzBUrkXlz6LFiVYbEHv+QrhbzhWxsQl0t8Q9S9cJNZvtrrXOudyC3pxF7xwCkF+4bQt+3lX/1Kve+IEDyrwR6GAbVd7zA7qdRMsetK9IYLxM3/uQlWjoCOC0KXRvXxCtVIUTEVUdDhACimJum9H63Q4xrUXsNKTC6RPR+t1+EC49EK9n/aR9Og4M8RnwqETrSuZ/SPOCwnE9tFzdT1CEhdHqMOzNQqELZ9vaPqiBKSrUXBuVKkOT9MYI6RHmsaIbEw9TgIRrigEacF9aTa47/JcIZBUOA/mm8KdVw/eJkMRyHPFQCZH+VF8wzJHI/Ig1eP8kAMjFXnx6Y3TFccIUoF+b7jHaKlhNRzok3AWJCULg9C2xj9DkyQlq+/QVlt0xS0CVqvAW27VHeNbwtw932krIC93vaX70kfk6a4ni4kEdo1Ybg16x+JzFbCO+1gUP3I3K/aDguqQCdxzW1ZWam16w8JTS/OYBQLhHVvNHQtXOPUkWCJaOasqHyEHK+d0+25Uu57ddwsBwHGFD1gjw0knMQ7LSV03RNpas6r+AxqmcAZKYqIITkdJTBDx1JVDYm3XU2stexYev4bIuaoVARe/lMiRwQ3c9Vw0iEPzBP3fM9LiW89sGVz6ug/ELSybLiJvZD1RcyQxVkbUHBFw6/YQ7KXHR0Fex157grh0LUgQN7APGkFcurRqrL+/9SEpkBAJ6YqQIG5hKyxiuHxjFEmj0SiQEAnpB6MgrmPZoCAufa0O4gaWDRqRt90+xksPyYK8iZYXeTTuCcpKoOyscDSA0x1C9eGsJwgrgbHehK82z1gvQVTxjPUStBXPWBlBYvGMNRAkFk/NG77aHDVviSVWgLiZ5YqDuHg8c8y8ZXy9OWbeCOKKZeYNLyiyf1gP4jr2YT2I69mH9SBuYB/Wg7iRfVgP4ib2YT2Im9mH9SBuYR/WY7hEiRHDzBtRcISZNqb6CAPryIf1IKwnH9aDsIF7WA+iRu5hPYiauIf1IGrmHtaDqIV7WA+hBrzkCLPAAs4pYfxBwBkmjPsKeL0RxtsGnGdiqCkL5MN6EDaSD+tB2EQ+rAdh4TVmqSmDFxmzDwt4sRFm2xhwPgmzyw2GZUuCsPAqY84QAS844qgpg1eZp6YMXmWemrJEcTuh+4eA1xvxlB3Aa4zJAQS83giTsgg4e2SfYUHuHgJOHmESN8G6C2HrlkBXHAGlZUuqgrBs1wsQlq04AsKyFUdA2MLDVoGIiiPM3Du29wUIy3KQxWE7HgiRz5NlV0DYQD6SBWEjSWkGYdOFnAcBNpNvb6ErjEAQPyJ+0xAI4gdjYHgZEuZOO/QIHwhdHLq+CDjNg+ELBJzlwdAbgofXGMPGCDjLI1N2kEhKSoBQeYoHUnYrEBSPPS5S4CkEktG/50F1BccR38C3l4n1elyhT+54Z7W+TL+8DhHN47Zt7+Nivl4uXu4f2p+mX2eLZfd3j7Pl49tsfb/53dPhw59ny9X6fjf0zc+7J6JfZ8v127sy9t/+/hddAZTHn++2X7BaT+fr93zd4+LL63Q5XXffc/fX//ivu2/CaJymH3h0ApoHdeNuQjd0wxzRZqKOmR+xjs+BoLEIhx9h1ZAvFqy4KuuHK6aBTt2b1HF7dBbsEh+StkdtQdaKG14rPUILgjYCRi1jOwLWf3fwNK09dt5TfruFLIAERiJvhiWKXNYECpGRfbKKRUicmLKHhQJkpF4QHN6aoPExsVWKJFeXqEUS3eC8JyzWHpjy33U4OWugIwzG38Rg2GaQor3omkGikTGxj3KxAJOoFxIpkHERp9sIPGphkRfubAjJmnlyNlKgK2SjPBE46I1yICg3e7mRCmAhK9/iRqmeYCDINvGg4TpSYM8u/jv2QTmyp43vejT0O2NxlnlqbIRWeqFxkQqJoTTKU4aDapOEQt8MQQ6q0DdDkP8oTrfRA91e8arHl7J3wmlEsRk02xLJzd73vJr7hCVos/ddDyazmz1piukMPeKYIld357gbw/xHxDlSKeJuLxJNmXJ9A2LruI5MKCdIWv5FJiZtoN9OYriRfjuJ4SY6AY7hZvrNIFI+KDbl0m1uXV7T0PIiVZSiovQOJq+l305iuI5+O4nhevrtJIZLF96J9eJf0UQFEiJhot9OYriZfjuJ4dIdLzBc2yhw60iGfjuJSWjpt5MYrqPfTmK4dBPPiJQTjJZu4hmReoLRxktxBT2kSw+IAm4mr10SQD6Ilr8kgqTF+VKHt5MYrqHfTmK4ln47ieE6+u0khutZYi4GG1hiLgZLXjFBm2acP8XNWGaJuRhsYW+uIFhPF6eCNrbeXJh+EaS1rLTQthZnUFEeF2dQUQECZ1BR8dezHQZB2MRmoDDYzMPWgQpLzIXkw6viUNvZwLaZkYYdLA+EyOdYYi4G61liLgYbWAYttOMMNN8Xk5bm+0L7WLwaDnX0DpdmE+uweC0cKmHSYw9Bl6/Q3hivikMlo/CiOFTuDK+JQ6X68JI4VGYyRl0R63hWp1CYu6QrYg3j0xTghFQsjHxTp4gUWIx8UydMXrKp0/FCXqpCG5PVFcdGZ45p7pT3Gq4jcSWEjzflqKQ8RVaSNOqKY8OSJiUFN0NEo0hUyNntmRNSgzcSFXJCPc9ej8mZrkiFyUvSdgK7NrLVFcWG8Z2qEDQM78kzNubjclDVl4aljuwxE/L4OOUlMA4/Zx3FQfT3uajqS6PaLTT3VvChhVp7R+4BKid9oJPkdDrOJ+iKOYpLZBdDYdvHYI6z0Ec6yM/jlXNSZqTNqrLVsI6Lqmw1CJ84wsixn2q3NwS0kxq6sHBCXrimhuasJuSJa2roS2xQXrqwMChv0PVpPZ8/V8enr7ZT/XV6amhWp4iU2cvWZCFbLTQuUooikT2ajmG4QKysRBBFgiX0QRBFgmX04XSdYM/1UV9rXMemQ4M/1KXhvBHhuCBIzXaexxwEziERDmOCtNzOMpJux7Ad6DFlWHZ/Kbkgy14NiEBsB3ps6Vq2Az22crk+TMf8EejILNuJHlRGZGExZSRV50DUi1maBpkshFtoXORZZiJIJIIp1+UlSCR7XExeugN9qj/cSwRtJNYlrNut8/SOSZIw0BIiL3yTo2lZ4MgTjYvJm0nuAWiihYWFLJSgi2RCWoIukhlpLRtbBWP17LU2ZlOefacryhdY+SDbxCkhiVlKnr3IBqXN9BWVh4yTvlJLyFuyRDROEqyqLi9fTSfVXwSlwMcjbOSOjiLIU6MU+OgkjTwokAAbJZoj7U8R2MgTjYvJy7Z4B02UbfGO2VWkz1KQtNHwsHUgOh5hw2aLLGI2FenoJA078ECAbUY2Jw8OO7GwmLSZzrZGyDgLjYtwYlNqFL6/jmTYJ0PYyIk2SHtcbOSOfYqUEFpgYuke+5ew3ZNYxMK4Yi2Tww3jOb6gl0jrJUJyJ8VuoI7EZ+GxmeOz8NDIcZpHYBYG3gcpMOsiK6JXHciRlGtw2J6kXGOTz7E3oiVXLc7eiIz7xtkb1Frl2BsHxhrqYvAiJsdIUQXCWRv7BB1kC3ixktQQWi1gWeBJF+x/7VjIwqiV1Y2S1Lw9Fbq6UcoCEtrcOab9GAGDKRFFdcOa42OQNE70mWU0zDiLjiCZsLbsuQFrcoZBA8yNUZG7RPvLDbgyGGVmnFARm6G5zj0GxbB0YVhr4NJgVkbGWRLHzXEdKKn4YLDlZR1bJGFX45lgUOw8WK7fi2ZDP/kXkYyOfZGwe7psrOomHFWpYdePqAc2wyACBdUlMKxPmnGUrSAoHWdEJPYBpAjE7rkkINvodh9Zql6WLZ3Jzl5AsrTeJSSni8TZY/7Q6krADSiRLQEnjpyNKCKQLqLAGsy01URBULp4jITk2My0CMSyfDqgHz/dzdbtl67q88tb+7qczdebv3+ZPrQvm3/7p+Xs6Q+P7UuH8bVdrraePznTBBu874gns/lT++eddzxCbL5n1pWsu/vhX/9yd1bt7v0bP0707m+OgLYT7X2Ms3YLczrgk0J9Y4XYt2fZid8W05tvDWXV/dZ0/7Nsn/rfMnv6+Lyw+9mf/Gyak39wsRP6edm281OscPKnpfLRahU/sGuF+zC6v2ktwk93b6t2800vi+VGvevlW4ur3AhawEpw29+HErygBM9ZvKMN3p0a+OnPp1Zs4qkZF3EFmHz64VL5cHXgaPXj7YDtLU1/XVWCHo5R9nm6bmUNuPFn0v3N5mLeTn6Zvsjtrt8Bh1S6eG3n9+8yvY/10+EXy3b6dL9q56vu7z/+6pJp6Gx3cBL+oV4SNY8pMMAKLNX4JSKe0FTsiIm+LDbms1dHTaW7X32evqyupNN/Gtbo/9ho9Aom/OGkPGB47oYN7+Jo10sCCHZqYTvtHfgFLINjuRGsBofyI1CEVAEyKfv/g0VJWwcTMXflf1NvdT2tqZ0Vo7M0YqIeN9EMmehVnd57aGBctqiHAm2/wu9l9yXpoZfEqtsDvnmwBtvJWQDKMjs5+/vxftW5k4/RDtv6IRr31NbvtFHr79qXyvo/Bumn9nH21C4nm295mM3fv6Wy//u7qvaESLSDPKph9dvY4qe7xdv69Y0A/bV9eVn8ssV9/XUj4Nt8ff95ufhyP5tvgPZumtTwpztLT0BkNt72d71LkpWUsI034iUytu9GoAq07QaQXAPtuhEkQ2y67W++oalNspRNcpbZC/9G7vt7OLgLShPyd7I+HbRPRozKE9tk+7fZJctqCND2EFFDVF1tOOJmI45kertwvdcX8vvTqxJ7elfiEpEpPgWzksoTcznibvxaQIxa/Xeio7cjN68Fcf0VzfUIsWjc6QWGM+eXeMM3hs6KRn/2p7XPfhu7sP3TL4s//DL99Q+Py8VqNZs/j97bxgvvbT9c0Otub8d6F+zyCn7kdnQYxg6hoI23dgf87uJqjBnEPejYv+eYWFvnaqAMWVeX0A9eJqEzUCX3JEwyg6sOZMkSQy2sldiRqwtgTt2HKR3npvALok54o1dEHYajMu15OBOTIDa/Zwdr6gzUQA5WgKFK2AZ5rG44izxazXmHi7yUzzQq8tyg6LyWCXWvRXTCsvjYLb1UTJUxRRD/LK5DvJZRUwcNwylHEBQogmHp1RNHEkuMWzQBcYt4x6tIaDOzoIg2cUKg2U8SUA+KqFNkhLl3Y+kbbA0hwloaFZHVKVCHswuIdzMHS3UIFdzRqwkoMOC44uqNLHIaOT5jIgNl6/CiRXZwsuDllHF14iWKMj5gvEDRxOyHDJTqxQsUHWGBWjieeMFOCOtpVETWoHBSNRz4qCP4uqotKRZPDSazsgGl1PGyRFIoqo0YL0p0QAVkJUoSmZ0KgPe4RHkiIyi2ZpFEdaKMy+rpvTwiKr94qidBvCyRHYShN3JAYdfAbuSA9/F4/SHJm9ckxcsP7VEBUdHOVBOzfZo7CeN3D5Fr02EOJ3/o4I+XI5qY+pTVTB2vRnTYIwPlfvDSRAdURFZuR7d/fznJyB4Ur080ObjSGgy7haujsDs4oPVIalSZmoTshvFaRLlqQzV7x+sQCbGtqgQwXW1SddVXx04djYys2JrJk8WH7L5MyuQsQ1B9yMAtqKPsGHqid+FABosoRrRHBTJPqehcC6SI3OhSg7GeGcx0/qGaeyKbSnGWhdciskMicuX9OQmDKvUWkcwbXnxIiKnVq53EggKZN67wkHGciqlFZRsKvBD5cV/VRxWV3Ra6cd9SiFy5xSXFt4O2wVGJ7WDGUQN9ogQypnjzqMOGGJE10bICediSL0WtyloujbDVBxcNnzeHYA17VodQLZs+g1DpvHm9KEPjeRxAusDevkGokbwog0DZVJ+gx0zDALIVMn+IgOLljAhzNOz5CgK1bF4FKeuMVzFifAfOetjLinQJwjkQjPs0kTtjOqB7H86EMIytwqvKMMaKZwEJa8X5EMR2x+B8CGJrZqzldpEGweTTf0h7B+tZWKQdreXSFsdzhYEqh1mef1fne4Ec6MPZd0tH+1tTgOtjOa7lh9nzKO19zymsY2GvVpsbUAvOAbFDluKMjr8I0Rcdm+lEutXizA/hyFVdeRwPxBhxXddlDlTkNAhkZA9eSFNERx8Ske2Iy0qv2UBkSqdjKDZCBTycEDLZK7YKYzgf3Hy/vsZbym1+zyMh07fC1LKbdqTHo2f37EiHRx91bq3BGNuJTVVapAhMZtOKEGrhtq5A/tMQHbks/BzXMOSXjKNadj8MoboL40Ud1bPpPyTEE+QXg9sV0aFrh4q0IiT6cxnCstgHAhBoIfOUCGhkYzAEamjQKgz7RACSjXwhAGF6LthBmIHFrKKQ5EtIMpJMBmFmMueHvNJhOTCIoImlYUKg5jJQoef0ZXunuqTsmRAC9dShDcl2pkDmJSE5I5mWhEATmZWEQDOZlIRAi45JdPYaItb7QbDbJqQFYzY6fhIos2U3D8j9R3YsKqQJr+IngYoIqsSAWBqfzc4K9eypcvYNN2LyOlGQsGiSgli5/dJoqE/Y6At5m4j098RJLrm2lOovatlwBQnqVYwnULNBxXgCwaOOXh6g3CvPe0G6B/K8F6QNH8F7yaiotmlUz/ahfoSW5r4AarAN+2S0/ga5IZN9AornzhXA4x6L81yqe4r6TKgKFkCNFi1Odtlt2iElZBIU0kJRkdYDcj1riY5edT3UUem3osgTOmtY/hgkK/tSFBOVJZNV35ZYnPXiq7LV60qQT90E0RInGvBoyBo2OYGNl30miohqaeIl8n7OEkU/9rDAdaW1bPjBhGWZl5isnpe1ikPm9ZDKD9aSawd5wmptokGrMJnb12MDJlN70ICJah91Uavm6NiNG1TvxLG5cUxWxdKp4nhWOmjMgUvdQ+WMyCIf+4tbY6BdO07zqLvNOmhW1SU5F7mu5UI7qGrNJJLFDE0WXu0j4ur0lipAaFJ9vE6VAnuvFVPF81TRwY1U41NLl/SoV4exPjJlByWFJabSIDY+MiknDU+VlTuv+lMtqRV0SQID5WBsYG9ehapigSxkKME4zVHZYIfEQO/I6keGwO7IBJiocgBWYMfZwJYTqNeStIFcFBKMalHYBloUPAuhHnRw4oE9wAyX9P1f83W7XO2EHyvnm2pgk4fF4uce4r9s5PnD6tfVtprvdIP8tb3fATTCN3z7fybkIHI=