forked from tspannhw/OpenSourceComputerVision
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestcv.py
70 lines (65 loc) · 2.74 KB
/
testcv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import cv2
import os
import sys
import json
import socket
import psutil
import subprocess
import time
import datetime
from time import sleep
from time import gmtime, strftime
from string import Template
# forked from https://gist.github.com/dannguyen/cfa2fb49b28c82a1068f
# first argument is the haarcascades path
currenttime= strftime("%Y-%m-%d %H:%M:%S",gmtime())
host = os.uname()[1]
#print(os.uname())
cpu = psutil.cpu_percent(interval=1)
if 1==1:
f = open('/sys/class/thermal/thermal_zone0/temp', 'r')
l = f.readline()
ctemp = 1.0 * float(l)/1000
usage = psutil.disk_usage("/")
mem = psutil.virtual_memory()
diskrootfree = "{:.1f} MB".format(float(usage.free) / 1024 / 1024)
mempercent = mem.percent
external_IP_and_port = ('198.41.0.4', 53) # a.root-servers.net
socket_family = socket.AF_INET
#p = subprocess.Popen(['/opt/vc/bin/vcgencmd','measure_temp'], stdout=subprocess.PIPE,
# stderr=subprocess.PIPE)
#out, err = p.communicate()
def IP_address():
try:
s = socket.socket(socket_family, socket.SOCK_DGRAM)
s.connect(external_IP_and_port)
answer = s.getsockname()
s.close()
return answer[0] if answer else None
except socket.error:
return None
ipaddress = IP_address()
face_cascade_path = '/media/nvidia/96ed93f9-7c40-4999-85ba-3eb24262d0a5/haarcascade_frontalface_default.xml'
face_cascade = cv2.CascadeClassifier(os.path.expanduser(face_cascade_path))
scale_factor = 1.1
min_neighbors = 3
min_size = (30, 30)
flags = cv2.CASCADE_SCALE_IMAGE
print('[')
for infname in sys.argv[1:]:
image_path = os.path.expanduser(infname)
image = cv2.imread(image_path)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, scaleFactor = scale_factor, minNeighbors = min_neighbors, minSize = min_size, flags = flags)
print('Faces: {0}'.format(len(faces)))
print('Face {0}'.format(faces))
for( x, y, w, h ) in faces:
cv2.rectangle(image, (x, y), (x + w, y + h), (255, 255, 0), 2)
outfname = "/media/nvidia/96ed93f9-7c40-4999-85ba-3eb24262d0a5/images/%s.faces.jpg" % os.path.basename(infname)
cv2.imwrite(os.path.expanduser(outfname), image)
endtime= strftime("%Y-%m-%d %H:%M:%S",gmtime())
# row = { 'ts': currenttime, 'endtime': endtime, 'host': host, 'memory': mempercent, 'diskfree': diskrootfree, 'cputemp': round(ctemp,2), 'ipaddress': ipaddress, 'x': x, 'y': y, 'w': w, 'h': h, 'filename': outfname }
row = { 'ts': currenttime, 'endtime': endtime, 'host': host, 'memory': mempercent, 'diskfree': diskrootfree, 'cputemp': round(ctemp,2), 'ipaddress': ipaddress, 'x': str(x), 'y': str(y), 'w': str(w), 'h': str(h), 'filename': outfname }
json_string = json.dumps(row)
print(json_string)
print(']')