-
Notifications
You must be signed in to change notification settings - Fork 36
/
model.py
553 lines (448 loc) · 23.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
from models.transformer import TorchGeneratorModel,_build_encoder,_build_decoder,_build_encoder_mask, _build_encoder4kg, _build_decoder4kg
from models.utils import _create_embeddings,_create_entity_embeddings
from models.graph import SelfAttentionLayer,SelfAttentionLayer_batch
from torch_geometric.nn.conv.rgcn_conv import RGCNConv
from torch_geometric.nn.conv.gcn_conv import GCNConv
import pickle as pkl
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
from collections import defaultdict
import numpy as np
import json
def _load_kg_embeddings(entity2entityId, dim, embedding_path):
kg_embeddings = torch.zeros(len(entity2entityId), dim)
with open(embedding_path, 'r') as f:
for line in f.readlines():
line = line.split('\t')
entity = line[0]
if entity not in entity2entityId:
continue
entityId = entity2entityId[entity]
embedding = torch.Tensor(list(map(float, line[1:])))
kg_embeddings[entityId] = embedding
return kg_embeddings
EDGE_TYPES = [58, 172]
def _edge_list(kg, n_entity, hop):
edge_list = []
for h in range(hop):
for entity in range(n_entity):
# add self loop
# edge_list.append((entity, entity))
# self_loop id = 185
edge_list.append((entity, entity, 185))
if entity not in kg:
continue
for tail_and_relation in kg[entity]:
if entity != tail_and_relation[1] and tail_and_relation[0] != 185 :# and tail_and_relation[0] in EDGE_TYPES:
edge_list.append((entity, tail_and_relation[1], tail_and_relation[0]))
edge_list.append((tail_and_relation[1], entity, tail_and_relation[0]))
relation_cnt = defaultdict(int)
relation_idx = {}
for h, t, r in edge_list:
relation_cnt[r] += 1
for h, t, r in edge_list:
if relation_cnt[r] > 1000 and r not in relation_idx:
relation_idx[r] = len(relation_idx)
return [(h, t, relation_idx[r]) for h, t, r in edge_list if relation_cnt[r] > 1000], len(relation_idx)
def concept_edge_list4GCN():
node2index=json.load(open('key2index_3rd.json',encoding='utf-8'))
f=open('conceptnet_edges2nd.txt',encoding='utf-8')
edges=set()
stopwords=set([word.strip() for word in open('stopwords.txt',encoding='utf-8')])
for line in f:
lines=line.strip().split('\t')
entity0=node2index[lines[1].split('/')[0]]
entity1=node2index[lines[2].split('/')[0]]
if lines[1].split('/')[0] in stopwords or lines[2].split('/')[0] in stopwords:
continue
edges.add((entity0,entity1))
edges.add((entity1,entity0))
edge_set=[[co[0] for co in list(edges)],[co[1] for co in list(edges)]]
return torch.LongTensor(edge_set).cuda()
class CrossModel(nn.Module):
def __init__(self, opt, dictionary, is_finetune=False, padding_idx=0, start_idx=1, end_idx=2, longest_label=1):
# self.pad_idx = dictionary[dictionary.null_token]
# self.start_idx = dictionary[dictionary.start_token]
# self.end_idx = dictionary[dictionary.end_token]
super().__init__() # self.pad_idx, self.start_idx, self.end_idx)
self.batch_size = opt['batch_size']
self.max_r_length = opt['max_r_length']
self.NULL_IDX = padding_idx
self.END_IDX = end_idx
self.register_buffer('START', torch.LongTensor([start_idx]))
self.longest_label = longest_label
self.pad_idx = padding_idx
self.embeddings = _create_embeddings(
dictionary, opt['embedding_size'], self.pad_idx
)
self.concept_embeddings=_create_entity_embeddings(
opt['n_concept']+1, opt['dim'], 0)
self.concept_padding=0
self.kg = pkl.load(
open("data/subkg.pkl", "rb")
)
if opt.get('n_positions'):
# if the number of positions is explicitly provided, use that
n_positions = opt['n_positions']
else:
# else, use the worst case from truncate
n_positions = max(
opt.get('truncate') or 0,
opt.get('text_truncate') or 0,
opt.get('label_truncate') or 0
)
if n_positions == 0:
# default to 1024
n_positions = 1024
if n_positions < 0:
raise ValueError('n_positions must be positive')
self.encoder = _build_encoder(
opt, dictionary, self.embeddings, self.pad_idx, reduction=False,
n_positions=n_positions,
)
self.decoder = _build_decoder4kg(
opt, dictionary, self.embeddings, self.pad_idx,
n_positions=n_positions,
)
self.db_norm = nn.Linear(opt['dim'], opt['embedding_size'])
self.kg_norm = nn.Linear(opt['dim'], opt['embedding_size'])
self.db_attn_norm=nn.Linear(opt['dim'],opt['embedding_size'])
self.kg_attn_norm=nn.Linear(opt['dim'],opt['embedding_size'])
self.criterion = nn.CrossEntropyLoss(reduce=False)
self.self_attn = SelfAttentionLayer_batch(opt['dim'], opt['dim'])
self.self_attn_db = SelfAttentionLayer(opt['dim'], opt['dim'])
self.user_norm = nn.Linear(opt['dim']*2, opt['dim'])
self.gate_norm = nn.Linear(opt['dim'], 1)
self.copy_norm = nn.Linear(opt['embedding_size']*2+opt['embedding_size'], opt['embedding_size'])
self.representation_bias = nn.Linear(opt['embedding_size'], len(dictionary) + 4)
self.info_con_norm = nn.Linear(opt['dim'], opt['dim'])
self.info_db_norm = nn.Linear(opt['dim'], opt['dim'])
self.info_output_db = nn.Linear(opt['dim'], opt['n_entity'])
self.info_output_con = nn.Linear(opt['dim'], opt['n_concept']+1)
self.info_con_loss = nn.MSELoss(size_average=False,reduce=False)
self.info_db_loss = nn.MSELoss(size_average=False,reduce=False)
self.user_representation_to_bias_1 = nn.Linear(opt['dim'], 512)
self.user_representation_to_bias_2 = nn.Linear(512, len(dictionary) + 4)
self.output_en = nn.Linear(opt['dim'], opt['n_entity'])
self.embedding_size=opt['embedding_size']
self.dim=opt['dim']
edge_list, self.n_relation = _edge_list(self.kg, opt['n_entity'], hop=2)
edge_list = list(set(edge_list))
print(len(edge_list), self.n_relation)
self.dbpedia_edge_sets=torch.LongTensor(edge_list).cuda()
self.db_edge_idx = self.dbpedia_edge_sets[:, :2].t()
self.db_edge_type = self.dbpedia_edge_sets[:, 2]
self.dbpedia_RGCN=RGCNConv(opt['n_entity'], self.dim, self.n_relation, num_bases=opt['num_bases'])
#self.concept_RGCN=RGCNConv(opt['n_concept']+1, self.dim, self.n_con_relation, num_bases=opt['num_bases'])
self.concept_edge_sets=concept_edge_list4GCN()
self.concept_GCN=GCNConv(self.dim, self.dim)
#self.concept_GCN4gen=GCNConv(self.dim, opt['embedding_size'])
w2i=json.load(open('word2index_redial.json',encoding='utf-8'))
self.i2w={w2i[word]:word for word in w2i}
self.mask4key=torch.Tensor(np.load('mask4key.npy')).cuda()
self.mask4movie=torch.Tensor(np.load('mask4movie.npy')).cuda()
self.mask4=self.mask4key+self.mask4movie
if is_finetune:
params = [self.dbpedia_RGCN.parameters(), self.concept_GCN.parameters(),
self.concept_embeddings.parameters(),
self.self_attn.parameters(), self.self_attn_db.parameters(), self.user_norm.parameters(),
self.gate_norm.parameters(), self.output_en.parameters()]
for param in params:
for pa in param:
pa.requires_grad = False
def _starts(self, bsz):
"""Return bsz start tokens."""
return self.START.detach().expand(bsz, 1)
def decode_greedy(self, encoder_states, encoder_states_kg, encoder_states_db, attention_kg, attention_db, bsz, maxlen):
"""
Greedy search
:param int bsz:
Batch size. Because encoder_states is model-specific, it cannot
infer this automatically.
:param encoder_states:
Output of the encoder model.
:type encoder_states:
Model specific
:param int maxlen:
Maximum decoding length
:return:
pair (logits, choices) of the greedy decode
:rtype:
(FloatTensor[bsz, maxlen, vocab], LongTensor[bsz, maxlen])
"""
xs = self._starts(bsz)
incr_state = None
logits = []
for i in range(maxlen):
# todo, break early if all beams saw EOS
scores, incr_state = self.decoder(xs, encoder_states, encoder_states_kg, encoder_states_db, incr_state)
#batch*1*hidden
scores = scores[:, -1:, :]
#scores = self.output(scores)
kg_attn_norm = self.kg_attn_norm(attention_kg)
db_attn_norm = self.db_attn_norm(attention_db)
copy_latent = self.copy_norm(torch.cat([kg_attn_norm.unsqueeze(1), db_attn_norm.unsqueeze(1), scores], -1))
# logits = self.output(latent)
con_logits = self.representation_bias(copy_latent)*self.mask4.unsqueeze(0).unsqueeze(0)#F.linear(copy_latent, self.embeddings.weight)
voc_logits = F.linear(scores, self.embeddings.weight)
# print(logits.size())
# print(mem_logits.size())
#gate = F.sigmoid(self.gen_gate_norm(scores))
sum_logits = voc_logits + con_logits #* (1 - gate)
_, preds = sum_logits.max(dim=-1)
#scores = F.linear(scores, self.embeddings.weight)
#print(attention_map)
#print(db_attention_map)
#print(preds.size())
#print(con_logits.size())
#exit()
#print(con_logits.squeeze(0).squeeze(0)[preds.squeeze(0).squeeze(0)])
#print(voc_logits.squeeze(0).squeeze(0)[preds.squeeze(0).squeeze(0)])
#print(torch.topk(voc_logits.squeeze(0).squeeze(0),k=50)[1])
#sum_logits = scores
# print(sum_logits.size())
#_, preds = sum_logits.max(dim=-1)
logits.append(sum_logits)
xs = torch.cat([xs, preds], dim=1)
# check if everyone has generated an end token
all_finished = ((xs == self.END_IDX).sum(dim=1) > 0).sum().item() == bsz
if all_finished:
break
logits = torch.cat(logits, 1)
return logits, xs
def decode_forced(self, encoder_states, encoder_states_kg, encoder_states_db, attention_kg, attention_db, ys):
"""
Decode with a fixed, true sequence, computing loss. Useful for
training, or ranking fixed candidates.
:param ys:
the prediction targets. Contains both the start and end tokens.
:type ys:
LongTensor[bsz, time]
:param encoder_states:
Output of the encoder. Model specific types.
:type encoder_states:
model specific
:return:
pair (logits, choices) containing the logits and MLE predictions
:rtype:
(FloatTensor[bsz, ys, vocab], LongTensor[bsz, ys])
"""
bsz = ys.size(0)
seqlen = ys.size(1)
inputs = ys.narrow(1, 0, seqlen - 1)
inputs = torch.cat([self._starts(bsz), inputs], 1)
latent, _ = self.decoder(inputs, encoder_states, encoder_states_kg, encoder_states_db) #batch*r_l*hidden
kg_attention_latent=self.kg_attn_norm(attention_kg)
#map=torch.bmm(latent,torch.transpose(kg_embs_norm,2,1))
#map_mask=((1-encoder_states_kg[1].float())*(-1e30)).unsqueeze(1)
#attention_map=F.softmax(map*map_mask,dim=-1)
#attention_latent=torch.bmm(attention_map,encoder_states_kg[0])
db_attention_latent=self.db_attn_norm(attention_db)
#db_map=torch.bmm(latent,torch.transpose(db_embs_norm,2,1))
#db_map_mask=((1-encoder_states_db[1].float())*(-1e30)).unsqueeze(1)
#db_attention_map=F.softmax(db_map*db_map_mask,dim=-1)
#db_attention_latent=torch.bmm(db_attention_map,encoder_states_db[0])
copy_latent=self.copy_norm(torch.cat([kg_attention_latent.unsqueeze(1).repeat(1,seqlen,1), db_attention_latent.unsqueeze(1).repeat(1,seqlen,1), latent],-1))
#logits = self.output(latent)
con_logits = self.representation_bias(copy_latent)*self.mask4.unsqueeze(0).unsqueeze(0)#F.linear(copy_latent, self.embeddings.weight)
logits = F.linear(latent, self.embeddings.weight)
# print(logits.size())
# print(mem_logits.size())
#gate=F.sigmoid(self.gen_gate_norm(latent))
sum_logits = logits+con_logits#*(1-gate)
_, preds = sum_logits.max(dim=2)
return logits, preds
def infomax_loss(self, con_nodes_features, db_nodes_features, con_user_emb, db_user_emb, con_label, db_label, mask):
#batch*dim
#node_count*dim
con_emb=self.info_con_norm(con_user_emb)
db_emb=self.info_db_norm(db_user_emb)
con_scores = F.linear(db_emb, con_nodes_features, self.info_output_con.bias)
db_scores = F.linear(con_emb, db_nodes_features, self.info_output_db.bias)
info_db_loss=torch.sum(self.info_db_loss(db_scores,db_label.cuda().float()),dim=-1)*mask.cuda()
info_con_loss=torch.sum(self.info_con_loss(con_scores,con_label.cuda().float()),dim=-1)*mask.cuda()
return torch.mean(info_db_loss), torch.mean(info_con_loss)
def forward(self, xs, ys, mask_ys, concept_mask, db_mask, seed_sets, labels, con_label, db_label, entity_vector, rec, test=True, cand_params=None, prev_enc=None, maxlen=None,
bsz=None):
"""
Get output predictions from the model.
:param xs:
input to the encoder
:type xs:
LongTensor[bsz, seqlen]
:param ys:
Expected output from the decoder. Used
for teacher forcing to calculate loss.
:type ys:
LongTensor[bsz, outlen]
:param prev_enc:
if you know you'll pass in the same xs multiple times, you can pass
in the encoder output from the last forward pass to skip
recalcuating the same encoder output.
:param maxlen:
max number of tokens to decode. if not set, will use the length of
the longest label this model has seen. ignored when ys is not None.
:param bsz:
if ys is not provided, then you must specify the bsz for greedy
decoding.
:return:
(scores, candidate_scores, encoder_states) tuple
- scores contains the model's predicted token scores.
(FloatTensor[bsz, seqlen, num_features])
- candidate_scores are the score the model assigned to each candidate.
(FloatTensor[bsz, num_cands])
- encoder_states are the output of model.encoder. Model specific types.
Feed this back in to skip encoding on the next call.
"""
if test == False:
# TODO: get rid of longest_label
# keep track of longest label we've ever seen
# we'll never produce longer ones than that during prediction
self.longest_label = max(self.longest_label, ys.size(1))
# use cached encoding if available
#xxs = self.embeddings(xs)
#mask=xs == self.pad_idx
encoder_states = prev_enc if prev_enc is not None else self.encoder(xs)
# graph network
db_nodes_features = self.dbpedia_RGCN(None, self.db_edge_idx, self.db_edge_type)
con_nodes_features=self.concept_GCN(self.concept_embeddings.weight,self.concept_edge_sets)
user_representation_list = []
db_con_mask=[]
for i, seed_set in enumerate(seed_sets):
if seed_set == []:
user_representation_list.append(torch.zeros(self.dim).cuda())
db_con_mask.append(torch.zeros([1]))
continue
user_representation = db_nodes_features[seed_set] # torch can reflect
user_representation = self.self_attn_db(user_representation)
user_representation_list.append(user_representation)
db_con_mask.append(torch.ones([1]))
db_user_emb=torch.stack(user_representation_list)
db_con_mask=torch.stack(db_con_mask)
graph_con_emb=con_nodes_features[concept_mask]
con_emb_mask=concept_mask==self.concept_padding
con_user_emb=graph_con_emb
con_user_emb,attention=self.self_attn(con_user_emb,con_emb_mask.cuda())
user_emb=self.user_norm(torch.cat([con_user_emb,db_user_emb],dim=-1))
uc_gate = F.sigmoid(self.gate_norm(user_emb))
user_emb = uc_gate * db_user_emb + (1 - uc_gate) * con_user_emb
entity_scores = F.linear(user_emb, db_nodes_features, self.output_en.bias)
#entity_scores = scores_db * gate + scores_con * (1 - gate)
#entity_scores=(scores_db+scores_con)/2
#mask loss
#m_emb=db_nodes_features[labels.cuda()]
#mask_mask=concept_mask!=self.concept_padding
mask_loss=0#self.mask_predict_loss(m_emb, attention, xs, mask_mask.cuda(),rec.float())
info_db_loss, info_con_loss=self.infomax_loss(con_nodes_features,db_nodes_features,con_user_emb,db_user_emb,con_label,db_label,db_con_mask)
#entity_scores = F.softmax(entity_scores.cuda(), dim=-1).cuda()
rec_loss=self.criterion(entity_scores.squeeze(1).squeeze(1).float(), labels.cuda())
#rec_loss=self.klloss(entity_scores.squeeze(1).squeeze(1).float(), labels.float().cuda())
rec_loss = torch.sum(rec_loss*rec.float().cuda())
self.user_rep=user_emb
#generation---------------------------------------------------------------------------------------------------
con_nodes_features4gen=con_nodes_features#self.concept_GCN4gen(con_nodes_features,self.concept_edge_sets)
con_emb4gen = con_nodes_features4gen[concept_mask]
con_mask4gen = concept_mask != self.concept_padding
#kg_encoding=self.kg_encoder(con_emb4gen.cuda(),con_mask4gen.cuda())
kg_encoding=(self.kg_norm(con_emb4gen),con_mask4gen.cuda())
db_emb4gen=db_nodes_features[entity_vector] #batch*50*dim
db_mask4gen=entity_vector!=0
#db_encoding=self.db_encoder(db_emb4gen.cuda(),db_mask4gen.cuda())
db_encoding=(self.db_norm(db_emb4gen),db_mask4gen.cuda())
if test == False:
# use teacher forcing
scores, preds = self.decode_forced(encoder_states, kg_encoding, db_encoding, con_user_emb, db_user_emb, mask_ys)
gen_loss = torch.mean(self.compute_loss(scores, mask_ys))
else:
scores, preds = self.decode_greedy(
encoder_states, kg_encoding, db_encoding, con_user_emb, db_user_emb,
bsz,
maxlen or self.longest_label
)
gen_loss = None
return scores, preds, entity_scores, rec_loss, gen_loss, mask_loss, info_db_loss, info_con_loss
def reorder_encoder_states(self, encoder_states, indices):
"""
Reorder encoder states according to a new set of indices.
This is an abstract method, and *must* be implemented by the user.
Its purpose is to provide beam search with a model-agnostic interface for
beam search. For example, this method is used to sort hypotheses,
expand beams, etc.
For example, assume that encoder_states is an bsz x 1 tensor of values
.. code-block:: python
indices = [0, 2, 2]
encoder_states = [[0.1]
[0.2]
[0.3]]
then the output will be
.. code-block:: python
output = [[0.1]
[0.3]
[0.3]]
:param encoder_states:
output from encoder. type is model specific.
:type encoder_states:
model specific
:param indices:
the indices to select over. The user must support non-tensor
inputs.
:type indices: list[int]
:return:
The re-ordered encoder states. It should be of the same type as
encoder states, and it must be a valid input to the decoder.
:rtype:
model specific
"""
enc, mask = encoder_states
if not torch.is_tensor(indices):
indices = torch.LongTensor(indices).to(enc.device)
enc = torch.index_select(enc, 0, indices)
mask = torch.index_select(mask, 0, indices)
return enc, mask
def reorder_decoder_incremental_state(self, incremental_state, inds):
"""
Reorder incremental state for the decoder.
Used to expand selected beams in beam_search. Unlike reorder_encoder_states,
implementing this method is optional. However, without incremental decoding,
decoding a single beam becomes O(n^2) instead of O(n), which can make
beam search impractically slow.
In order to fall back to non-incremental decoding, just return None from this
method.
:param incremental_state:
second output of model.decoder
:type incremental_state:
model specific
:param inds:
indices to select and reorder over.
:type inds:
LongTensor[n]
:return:
The re-ordered decoder incremental states. It should be the same
type as incremental_state, and usable as an input to the decoder.
This method should return None if the model does not support
incremental decoding.
:rtype:
model specific
"""
# no support for incremental decoding at this time
return None
def compute_loss(self, output, scores):
score_view = scores.view(-1)
output_view = output.view(-1, output.size(-1))
loss = self.criterion(output_view.cuda(), score_view.cuda())
return loss
def save_model(self):
torch.save(self.state_dict(), 'saved_model/net_parameter1.pkl')
def load_model(self):
self.load_state_dict(torch.load('saved_model/net_parameter1.pkl'))
def output(self, tensor):
# project back to vocabulary
output = F.linear(tensor, self.embeddings.weight)
up_bias = self.user_representation_to_bias_2(F.relu(self.user_representation_to_bias_1(self.user_rep)))
# up_bias = self.user_representation_to_bias_3(F.relu(self.user_representation_to_bias_2(F.relu(self.user_representation_to_bias_1(self.user_representation)))))
# Expand to the whole sequence
up_bias = up_bias.unsqueeze(dim=1)
output += up_bias
return output