forked from Tony607/Keras_age_gender
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrealtime_demo.py
143 lines (127 loc) · 5.39 KB
/
realtime_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
"""
Face detection
"""
import cv2
import os
from time import sleep
import numpy as np
import argparse
from wide_resnet import WideResNet
from keras.utils.data_utils import get_file
class FaceCV(object):
"""
Singleton class for face recongnition task
"""
CASE_PATH = ".\\pretrained_models\\haarcascade_frontalface_alt.xml"
WRN_WEIGHTS_PATH = "https://github.com/Tony607/Keras_age_gender/releases/download/V1.0/weights.18-4.06.hdf5"
def __new__(cls, weight_file=None, depth=16, width=8, face_size=64):
if not hasattr(cls, 'instance'):
cls.instance = super(FaceCV, cls).__new__(cls)
return cls.instance
def __init__(self, depth=16, width=8, face_size=64):
self.face_size = face_size
self.model = WideResNet(face_size, depth=depth, k=width)()
model_dir = os.path.join(os.getcwd(), "pretrained_models").replace("//", "\\")
fpath = get_file('weights.18-4.06.hdf5',
self.WRN_WEIGHTS_PATH,
cache_subdir=model_dir)
self.model.load_weights(fpath)
@classmethod
def draw_label(cls, image, point, label, font=cv2.FONT_HERSHEY_SIMPLEX,
font_scale=1, thickness=2):
size = cv2.getTextSize(label, font, font_scale, thickness)[0]
x, y = point
cv2.rectangle(image, (x, y - size[1]), (x + size[0], y), (255, 0, 0), cv2.FILLED)
cv2.putText(image, label, point, font, font_scale, (255, 255, 255), thickness)
def crop_face(self, imgarray, section, margin=40, size=64):
"""
:param imgarray: full image
:param section: face detected area (x, y, w, h)
:param margin: add some margin to the face detected area to include a full head
:param size: the result image resolution with be (size x size)
:return: resized image in numpy array with shape (size x size x 3)
"""
img_h, img_w, _ = imgarray.shape
if section is None:
section = [0, 0, img_w, img_h]
(x, y, w, h) = section
margin = int(min(w,h) * margin / 100)
x_a = x - margin
y_a = y - margin
x_b = x + w + margin
y_b = y + h + margin
if x_a < 0:
x_b = min(x_b - x_a, img_w-1)
x_a = 0
if y_a < 0:
y_b = min(y_b - y_a, img_h-1)
y_a = 0
if x_b > img_w:
x_a = max(x_a - (x_b - img_w), 0)
x_b = img_w
if y_b > img_h:
y_a = max(y_a - (y_b - img_h), 0)
y_b = img_h
cropped = imgarray[y_a: y_b, x_a: x_b]
resized_img = cv2.resize(cropped, (size, size), interpolation=cv2.INTER_AREA)
resized_img = np.array(resized_img)
return resized_img, (x_a, y_a, x_b - x_a, y_b - y_a)
def detect_face(self):
face_cascade = cv2.CascadeClassifier(self.CASE_PATH)
# 0 means the default video capture device in OS
video_capture = cv2.VideoCapture(0)
# infinite loop, break by key ESC
while True:
if not video_capture.isOpened():
sleep(5)
# Capture frame-by-frame
ret, frame = video_capture.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(
gray,
scaleFactor=1.2,
minNeighbors=10,
minSize=(self.face_size, self.face_size)
)
# placeholder for cropped faces
face_imgs = np.empty((len(faces), self.face_size, self.face_size, 3))
for i, face in enumerate(faces):
face_img, cropped = self.crop_face(frame, face, margin=40, size=self.face_size)
(x, y, w, h) = cropped
cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 200, 0), 2)
face_imgs[i,:,:,:] = face_img
if len(face_imgs) > 0:
# predict ages and genders of the detected faces
results = self.model.predict(face_imgs)
predicted_genders = results[0]
ages = np.arange(0, 101).reshape(101, 1)
predicted_ages = results[1].dot(ages).flatten()
# draw results
for i, face in enumerate(faces):
label = "{}, {}".format(int(predicted_ages[i]),
"F" if predicted_genders[i][0] > 0.5 else "M")
self.draw_label(frame, (face[0], face[1]), label)
cv2.imshow('Keras Faces', frame)
if cv2.waitKey(5) == 27: # ESC key press
break
# When everything is done, release the capture
video_capture.release()
cv2.destroyAllWindows()
def get_args():
parser = argparse.ArgumentParser(description="This script detects faces from web cam input, "
"and estimates age and gender for the detected faces.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--depth", type=int, default=16,
help="depth of network")
parser.add_argument("--width", type=int, default=8,
help="width of network")
args = parser.parse_args()
return args
def main():
args = get_args()
depth = args.depth
width = args.width
face = FaceCV(depth=depth, width=width)
face.detect_face()
if __name__ == "__main__":
main()