You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
a vision-language pre-training model for the medical domain
Medical Subject Headings(MeSH) words are important semantic components in radiograph reports.
Methods
Pretrained with MIMIC-CXR
Clinical Diagnosis (CD)
Masked MeSH Modeling (MMM)
Same method as MLM, not all language tokens but MeSH words
80% mask,10% replace, 10% unchanged
Image-MeSH Matching (IMM)
Image-MeSH Matching(IMM)
Imm task, align images and mesh words in certain latent space → by cross-modal matching score
propose Two-level sparse attention
RSA(region sparse attention):The RSA generates aligned region features for each word. This process mimics the focus of radiologists’ interest when writing reports according to different observations.
WSA(word sparse attention): The WSA forces the model to focus on semantic com- ponents in the report to increase the contribution of MeSH words to the matching score.
요약
기존의 방법론(masked language modeling, Image Report Matching)에서 MeSH와 다른 단어들은 동등하게 취급됨, 그러나 MeSH 단어는 pre-training task에서 recieve more attention 해야만이 downstream task에서 좋은 성능을 발휘할 수 있음
Clinical Diagnosis (CD), Masked MeSH Modeling (MMM), and Image-MeSH Matching (IMM) 이 세 가지 방법을 제시함
CD task에서 multi-label classification problem으로 생각함.
MMM은 MeSH를 randomly mask 함 - 이를 통해서 모델이 MeSH 에 대해서 조금 더 집중 할 수 있게 해줌
IMM에서 Two-level sparse attention을 실시함- 이를 통해 모델이 MeSH word에 대한 alignment 를 좀 더 잘 학습 할 수 있게 해줌
The text was updated successfully, but these errors were encountered:
Paper
https://ojs.aaai.org/index.php/AAAI/article/view/20204
Speaker
@dh58319
Summary
Key Point
a vision-language pre-training model for the medical domain
Medical Subject Headings(MeSH) words are important semantic components in radiograph reports.
Methods
Pretrained with MIMIC-CXR
Clinical Diagnosis (CD)
Masked MeSH Modeling (MMM)
Same method as MLM, not all language tokens but MeSH words
80% mask,10% replace, 10% unchanged
Image-MeSH Matching (IMM)
Image-MeSH Matching(IMM)
Imm task, align images and mesh words in certain latent space → by cross-modal matching score
propose Two-level sparse attention
요약
기존의 방법론(masked language modeling, Image Report Matching)에서 MeSH와 다른 단어들은 동등하게 취급됨, 그러나 MeSH 단어는 pre-training task에서 recieve more attention 해야만이 downstream task에서 좋은 성능을 발휘할 수 있음
Clinical Diagnosis (CD), Masked MeSH Modeling (MMM), and Image-MeSH Matching (IMM) 이 세 가지 방법을 제시함
CD task에서 multi-label classification problem으로 생각함.
MMM은 MeSH를 randomly mask 함 - 이를 통해서 모델이 MeSH 에 대해서 조금 더 집중 할 수 있게 해줌
IMM에서 Two-level sparse attention을 실시함- 이를 통해 모델이 MeSH word에 대한 alignment 를 좀 더 잘 학습 할 수 있게 해줌
The text was updated successfully, but these errors were encountered: