forked from bghira/SimpleTuner
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfigure.py
940 lines (872 loc) · 35.4 KB
/
configure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
import os
import huggingface_hub
import torch
from helpers.training import quantised_precision_levels, lycoris_defaults
from helpers.training.optimizer_param import optimizer_choices
bf16_only_optims = [
key
for key, value in optimizer_choices.items()
if value.get("precision", "any") == "bf16"
]
any_precision_optims = [
key
for key, value in optimizer_choices.items()
if value.get("precision", "any") == "any"
]
model_classes = {
"full": [
"flux",
"sdxl",
"pixart_sigma",
"kolors",
"sd3",
"legacy",
"sana",
],
"lora": ["flux", "sdxl", "kolors", "sd3", "legacy"],
"controlnet": ["sdxl", "legacy"],
}
default_models = {
"flux": "black-forest-labs/FLUX.1-dev",
"sdxl": "stabilityai/stable-diffusion-xl-base-1.0",
"pixart_sigma": "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS",
"kolors": "kwai-kolors/kolors-diffusers",
"terminus": "ptx0/terminus-xl-velocity-v2",
"sd3": "stabilityai/stable-diffusion-3.5-large",
"legacy": "stabilityai/stable-diffusion-2-1-base",
"sana": "terminusresearch/sana-1.6b-1024px",
}
default_cfg = {
"flux": 3.0,
"sdxl": 4.2,
"pixart_sigma": 3.4,
"kolors": 5.0,
"terminus": 8.0,
"sd3": 5.0,
"sana": 3.8,
}
model_labels = {
"sd3": "Stable Diffusion 3",
"flux": "FLUX",
"pixart_sigma": "PixArt Sigma",
"kolors": "Kwai Kolors",
"terminus": "Terminus",
"sdxl": "Stable Diffusion XL",
"legacy": "Stable Diffusion",
"sana": "Sana",
}
lora_ranks = [1, 16, 64, 128, 256]
learning_rates_by_rank = {
1: "3e-4",
16: "1e-4",
64: "8e-5",
128: "6e-5",
256: "5.09e-5",
}
def print_config(env_contents: dict, extra_args: list):
# env_contents["TRAINER_EXTRA_ARGS"] = " ".join(extra_args)
# output = json.dumps(env_contents, indent=4)
# print(output)
pass
def prompt_user(prompt, default=None):
if default:
prompt = f"{prompt} (default: {default})"
user_input = input(f"{prompt}: ")
return user_input.strip() or default
def configure_lycoris():
print("Let's configure your LyCORIS model!\n")
print("Select a LyCORIS algorithm:\n")
print(
"1. LoRA - Efficient, balanced fine-tuning. Good for general tasks. (algo=lora)"
)
print(
"2. LoHa - Advanced, strong dampening. Ideal for multi-concept fine-tuning. (algo=loha)"
)
print(
"3. LoKr - Kronecker product-based. Use for complex transformations. (algo=lokr)"
)
print("4. Full Fine-Tuning - Traditional full model tuning. (algo=full)")
print("5. IA^3 - Efficient, tiny files, best for styles. (algo=ia3)")
print("6. DyLoRA - Dynamic updates, efficient with large dims. (algo=dylora)")
print("7. Diag-OFT - Fast convergence with orthogonal fine-tuning. (algo=diag-oft)")
print("8. BOFT - Advanced version of Diag-OFT with more flexibility. (algo=boft)")
print("9. GLoRA - Generalized LoRA. (algo=glora)\n")
# Prompt user to select an algorithm
algo = prompt_user(
f"Which LyCORIS algorithm would you like to use? (Enter the number corresponding to the algorithm)",
"3", # Default to LoKr
)
# Map the selected number to the actual algorithm name
algo_map = {
"1": "lora",
"2": "loha",
"3": "lokr",
"4": "full",
"5": "ia3",
"6": "dylora",
"7": "diag-oft",
"8": "boft",
"9": "glora",
}
algo = algo_map.get(algo, "lokr").lower()
# Get the default configuration for the selected algorithm
default_config = lycoris_defaults.get(algo, {}).copy()
# Continue with further configuration
print(f"\nConfiguring {algo.upper()} algorithm...\n")
multiplier = float(
prompt_user(
f"Set the effect multiplier. Adjust for stronger or subtler effects. "
f"(default: {default_config.get('multiplier', 1.0)})",
default_config.get("multiplier", 1.0),
)
)
linear_dim = int(
prompt_user(
f"Set the linear dimension. Higher values mean more capacity but use more resources. "
f"(default: {default_config.get('linear_dim', 1000000)})",
default_config.get("linear_dim", 1000000),
)
)
linear_alpha = int(
prompt_user(
f"Set the alpha scaling factor. Controls the impact on the model. "
f"(default: {default_config.get('linear_alpha', 1)})",
default_config.get("linear_alpha", 1),
)
)
# Update basic parameters in config
default_config.update(
{
"multiplier": multiplier,
"linear_dim": linear_dim,
"linear_alpha": linear_alpha,
}
)
# Conditional prompts based on the selected algorithm
if algo == "lokr":
factor = int(
prompt_user(
f"Set the factor for compression/expansion. "
f"(default: {default_config.get('factor', 16)})",
default_config.get("factor", 16),
)
)
default_config.update({"factor": factor})
if linear_dim >= 10000: # Handle full-dimension case
print("Full-dimension mode activated. Alpha will be set to 1.")
default_config["linear_alpha"] = 1
elif algo == "loha":
if linear_dim > 32:
print("Warning: High dim values with LoHa may cause instability.")
# Additional LoHa-specific configurations can be added here if needed
elif algo == "dylora":
block_size = int(
prompt_user(
f"Set block size for DyLoRA (rows/columns updated per step). "
f"(default: {default_config.get('block_size', 0)})",
default_config.get("block_size", 0),
)
)
default_config.update({"block_size": block_size})
elif algo in ["diag-oft", "boft"]:
constraint = (
prompt_user(
f"Enforce constraints (e.g., orthogonality)? "
f"(True/False, default: {default_config.get('constraint', False)})",
str(default_config.get("constraint", False)),
).lower()
== "true"
)
rescaled = (
prompt_user(
f"Rescale transformations? Adjusts model impact. "
f"(True/False, default: {default_config.get('rescaled', False)})",
str(default_config.get("rescaled", False)),
).lower()
== "true"
)
default_config.update(
{
"constraint": constraint,
"rescaled": rescaled,
}
)
# Handle presets for specific modules
if "apply_preset" in default_config:
print("\nNext, configure the modules to target with this algorithm.")
target_module = prompt_user(
f"Which modules should the {algo.upper()} algorithm be applied to? "
f"(default: {', '.join(default_config['apply_preset']['target_module'])})",
", ".join(default_config["apply_preset"]["target_module"]),
).split(",")
default_config["apply_preset"]["target_module"] = [
m.strip() for m in target_module
]
for module_name, module_config in default_config["apply_preset"][
"module_algo_map"
].items():
for param, value in module_config.items():
user_value = prompt_user(
f"Set {param} for {module_name}. " f"(default: {value})", value
)
module_config[param] = (
int(user_value) if isinstance(value, int) else float(user_value)
)
print("\nLyCORIS configuration complete: ", default_config)
return default_config
def configure_env():
print("Welcome to SimpleTuner!")
print("This script will guide you through setting up your config.json file.\n")
env_contents = {
"--resume_from_checkpoint": "latest",
"--data_backend_config": "config/multidatabackend.json",
"--aspect_bucket_rounding": 2,
"--seed": 42,
"--minimum_image_size": 0,
"--disable_benchmark": False,
}
extra_args = []
output_dir = prompt_user(
"Enter the directory where you want to store your outputs", "output/models"
)
while not os.path.exists(output_dir):
should_create = (
prompt_user(
"That directory did not exist. Should I create it? Answer 'n' to select a new location. ([y]/n)",
"y",
)
== "y"
)
if should_create:
os.makedirs(output_dir, exist_ok=True)
else:
print(
f"Directory {output_dir} does not exist. Please create it and try again."
)
output_dir = prompt_user(
"Enter the directory where you want to store your outputs",
"output/models",
)
env_contents["--output_dir"] = output_dir
# Start with the basic options
model_type = prompt_user(
"What type of model are you training? (Options: [lora], full)", "lora"
).lower()
use_lycoris = False
use_lora = False
if model_type == "lora":
use_lora = True
use_lycoris = (
prompt_user("Would you like to train a LyCORIS model? ([y]/n)", "y").lower()
== "y"
)
if use_lycoris:
env_contents["--lora_type"] = "lycoris"
lycoris_config = configure_lycoris()
env_contents["--lycoris_config"] = "config/lycoris_config.json"
# write json to file
import json
# approximate the rank of the lycoris
lora_rank = 16
with open("config/lycoris_config.json", "w", encoding="utf-8") as f:
f.write(json.dumps(lycoris_config, indent=4))
else:
env_contents["--lora_type"] = "standard"
use_dora = prompt_user(
"Would you like to train a DoRA model? (y/[n])", "n"
).lower()
if use_dora == "y":
env_contents["--use_dora"] = "true"
lora_rank = None
while lora_rank not in lora_ranks:
if lora_rank is not None:
print(f"Invalid LoRA rank: {lora_rank}")
lora_rank = int(
prompt_user(
f"Set the LoRA rank (Options: {', '.join([str(x) for x in lora_ranks])})",
"64",
)
)
env_contents["--lora_rank"] = lora_rank
elif model_type == "full":
use_ema = prompt_user(
"Would you like to use EMA for training? (y/[n])", "n"
).lower()
if use_ema == "y":
env_contents["--use_ema"] = "true"
print("We'll try and login to Hugging Face Hub..")
whoami = None
try:
whoami = huggingface_hub.whoami()
except:
pass
should_retry = True
while not whoami and should_retry:
should_retry = (
prompt_user(
"You are not currently logged into Hugging Face Hub. Would you like to login? (y/n)",
"y",
).lower()
== "y"
)
if not should_retry:
whoami = None
print("Will not be logged into Hugging Face Hub.")
break
huggingface_hub.login()
whoami = huggingface_hub.whoami()
finishing_count_type = prompt_user(
"Should we schedule the end of training by epochs, or steps?", "steps"
).lower()
while finishing_count_type not in ["steps", "epochs"]:
print(f"Invalid finishing count type: {finishing_count_type}")
finishing_count_type = prompt_user(
"Should we schedule the end of training by epochs, or steps?", "steps"
).lower()
default_checkpointing_interval = 500
if finishing_count_type == "steps":
env_contents["--max_train_steps"] = int(
prompt_user("Set the maximum number of steps", 10000)
)
if env_contents["--max_train_steps"] < default_checkpointing_interval:
# reduce the default checkpointing interval offered to the user so that they get a reasonable value.
default_checkpointing_interval = env_contents["--max_train_steps"] // 10
env_contents["--num_train_epochs"] = 0
else:
env_contents["--num_train_epochs"] = prompt_user(
"Set the maximum number of epochs", 100
)
env_contents["--max_train_steps"] = 0
checkpointing_interval = prompt_user(
"Set the checkpointing interval (in steps)", default_checkpointing_interval
)
env_contents["--checkpointing_steps"] = int(checkpointing_interval)
checkpointing_limit = prompt_user(
"How many checkpoints do you want to keep? LoRA are small, and you can keep more than a full finetune.",
5,
)
env_contents["--checkpoints_total_limit"] = int(checkpointing_limit)
if whoami is not None:
print("Connected to Hugging Face Hub as:", whoami["name"])
should_push_to_hub = (
prompt_user(
"Do you want to push your model to Hugging Face Hub when it is completed uploading? (y/n)",
"y",
).lower()
== "y"
)
if should_push_to_hub:
env_contents["--hub_model_id"] = prompt_user(
f"What do you want the name of your Hugging Face Hub model to be? This will be accessible as https://huggingface.co/{whoami['name']}/your-model-name-here",
f"simpletuner-{model_type}",
)
should_push_checkpoints = False
env_contents["--push_to_hub"] = "true"
should_push_checkpoints = (
prompt_user(
"Do you want to push intermediary checkpoints to Hugging Face Hub? ([y]/n)",
"y",
).lower()
== "y"
)
if should_push_checkpoints:
env_contents["--push_checkpoints_to_hub"] = "true"
model_card_safe_for_work = (
prompt_user(
"Is your target model considered safe-for-work? Answering yes here will remove the NSFW warning from the Hugging Face Hub model card. If you are unsure, please leave this as 'no'. (y/[n])",
"n",
).lower()
== "y"
)
if model_card_safe_for_work:
env_contents["--model_card_safe_for_work"] = "true"
report_to_wandb = (
prompt_user(
"Would you like to report training statistics to Weights & Biases? ([y]/n)",
"y",
).lower()
== "y"
)
report_to_tensorboard = (
prompt_user(
"Would you like to report training statistics to TensorBoard? (y/[n])", "n"
).lower()
== "y"
)
env_contents["--attention_mechanism"] = "diffusers"
use_sageattention = (
prompt_user(
"Would you like to use SageAttention for image validation generation? (y/[n])",
"n",
).lower()
== "y"
)
if use_sageattention:
env_contents["--attention_mechanism"] = "sageattention"
env_contents["--sageattention_usage"] = "inference"
use_sageattention_training = (
prompt_user(
(
"Would you like to use SageAttention to cover the forward and backward pass during training?"
" This has the undesirable consequence of leaving the attention layers untrained,"
" as SageAttention lacks the capability to fully track gradients through quantisation."
" If you are not training the attention layers for some reason, this may not matter and"
" you can safely enable this. For all other use-cases, reconsideration and caution are warranted."
),
"n",
).lower()
== "y"
)
if use_sageattention_training:
env_contents["--sageattention_usage"] = "both"
# properly disable wandb/tensorboard/comet_ml etc by default
report_to_str = "none"
if report_to_wandb or report_to_tensorboard:
tracker_project_name = prompt_user(
"Enter the name of your Weights & Biases project", f"{model_type}-training"
)
env_contents["--tracker_project_name"] = tracker_project_name
tracker_run_name = prompt_user(
"Enter the name of your Weights & Biases runs. This can use shell commands, which can be used to dynamically set the run name.",
f"simpletuner-{model_type}",
)
env_contents["--tracker_run_name"] = tracker_run_name
if report_to_wandb:
report_to_str = "wandb"
if report_to_tensorboard:
if report_to_str != "none":
# report to both WandB and Tensorboard if the user wanted.
report_to_str += ","
else:
# remove 'none' from the option
report_to_str = ""
report_to_str += "tensorboard"
env_contents["--report_to"] = report_to_str
print_config(env_contents, extra_args)
model_class = None
while model_class not in model_classes[model_type]:
if model_class is not None:
print(f"Invalid model class: {model_class}")
model_class = prompt_user(
f"Which model family are you training? ({'/'.join(model_classes[model_type])})",
"flux",
).lower()
can_load_model = False
model_name = None
while not can_load_model:
if model_name is not None:
print(
"For some reason, we can not load that model. Can you check your Hugging Face login and try again?"
)
model_name = prompt_user(
"Enter the model name from Hugging Face Hub", default_models[model_class]
)
try:
model_info = huggingface_hub.model_info(model_name)
if hasattr(model_info, "id"):
can_load_model = True
except:
continue
env_contents["--model_type"] = model_type
env_contents["--pretrained_model_name_or_path"] = model_name
env_contents["--model_family"] = model_class.lower()
# Flux-specific options
if "FLUX" in env_contents and env_contents["--model_family"] == "flux":
if env_contents["--model_type"].lower() == "lora" and not use_lycoris:
flux_targets = [
"mmdit",
"context",
"all",
"all+ffs",
"ai-toolkit",
"tiny",
"nano",
]
flux_target_layers = None
while flux_target_layers not in flux_targets:
if flux_target_layers:
print(f"Invalid Flux target layers: {flux_target_layers}")
flux_target_layers = prompt_user(
f"Set Flux target layers (Options: {'/'.join(flux_targets)})",
"all",
)
env_contents["--flux_lora_target"] = flux_target_layers
print_config(env_contents, extra_args)
# Additional settings
env_contents["--train_batch_size"] = int(
prompt_user(
"Set the training batch size. Larger values will require larger datasets, more VRAM, and slow things down.",
1,
)
)
env_contents["--gradient_checkpointing"] = "true"
if env_contents["--model_family"] in ["sdxl", "flux", "sd3", "sana"]:
gradient_checkpointing_interval = prompt_user(
"Would you like to configure a gradient checkpointing interval? A value larger than 1 will increase VRAM usage but speed up training by skipping checkpoint creation every Nth layer, and a zero will disable this feature.",
0,
)
try:
if int(gradient_checkpointing_interval) > 1:
env_contents["--gradient_checkpointing_interval"] = int(
gradient_checkpointing_interval
)
except:
print("Could not parse gradient checkpointing interval. Not enabling.")
pass
env_contents["--caption_dropout_probability"] = float(
prompt_user(
"Set the caption dropout rate, or use 0.0 to disable it. Dropout might be a good idea to disable for Flux training, but experimentation is warranted.",
"0.05" if any([use_lora, use_lycoris]) else "0.1",
)
)
resolution_types = ["pixel", "area", "pixel_area"]
env_contents["--resolution_type"] = None
while env_contents["--resolution_type"] not in resolution_types:
if env_contents["--resolution_type"]:
print(f"Invalid resolution type: {env_contents['--resolution_type']}")
env_contents["--resolution_type"] = prompt_user(
"How do you want to measure dataset resolutions? 'pixel' will size images with the shorter edge, 'area' will measure in megapixels, and is great for aspect-bucketing. 'pixel_area' is a combination of these two ideas, which lets you set your area using pixels instead of megapixels.",
"pixel_area",
).lower()
if (
env_contents["--resolution_type"] == "pixel"
or env_contents["--resolution_type"] == "pixel_area"
):
default_resolution = 1024
resolution_unit = "pixel"
else:
default_resolution = 1.0
resolution_unit = "megapixel"
env_contents["--resolution"] = prompt_user(
f"What would you like the default resolution of your datasets to be? The default for is {env_contents['--resolution_type']} is {default_resolution} {resolution_unit}s.",
default_resolution,
)
# remove spaces from validation resolution, ensure it's a single WxH or a comma-separated list of WxH
env_contents["--validation_seed"] = prompt_user("Set the seed for validation", 42)
env_contents["--validation_steps"] = prompt_user(
"How many steps in between validation outputs?",
env_contents["--checkpointing_steps"],
)
env_contents["--validation_resolution"] = None
while (
env_contents["--validation_resolution"] is None
or "x" not in env_contents["--validation_resolution"]
):
if env_contents["--validation_resolution"] is not None:
print(
"Invalid resolution format. Please enter a single resolution, or a comma-separated list. Example: 1024x1024,1280x768"
)
env_contents["--validation_resolution"] = prompt_user(
"Set the validation resolution. Format could be a single resolution, or comma-separated.",
"1024x1024",
)
env_contents["--validation_resolution"] = ",".join(
[x.strip() for x in env_contents["--validation_resolution"].split(",")]
)
env_contents["--validation_guidance"] = prompt_user(
"Set the guidance scale for validation", default_cfg.get(model_class, 3.0)
)
env_contents["--validation_guidance_rescale"] = prompt_user(
"Set the guidance re-scale for validation - this is called dynamic thresholding and is used mostly for zero-terminal SNR models.",
"0.0",
)
env_contents["--validation_num_inference_steps"] = prompt_user(
"Set the number of inference steps for validation", "20"
)
env_contents["--validation_prompt"] = prompt_user(
"Set the validation prompt", "A photo-realistic image of a cat"
)
print_config(env_contents, extra_args)
# Advanced options
if torch.cuda.is_available():
use_tf32 = (
prompt_user("Would you like to enable TF32 mode? ([y]/n)", "y").lower()
== "y"
)
if not use_tf32:
env_contents["--disable_tf32"] = "true"
mixed_precision_options = ["bf16", "no"]
env_contents["--mixed_precision"] = None
while (
not env_contents["--mixed_precision"]
or env_contents["--mixed_precision"] not in mixed_precision_options
):
if env_contents["--mixed_precision"]:
print(
f"Invalid mixed precision option: {env_contents['--mixed_precision']}"
)
env_contents["--mixed_precision"] = prompt_user(
"Set mixed precision mode (Options: bf16, no (fp32))", "bf16"
)
if env_contents["--mixed_precision"] == "bf16":
compatible_optims = bf16_only_optims + any_precision_optims
else:
compatible_optims = any_precision_optims
env_contents["--optimizer"] = None
while (
not env_contents["--optimizer"]
or env_contents["--optimizer"] not in compatible_optims
):
if env_contents["--optimizer"]:
print(f"Invalid optimizer: {env_contents['--optimizer']}")
env_contents["--optimizer"] = prompt_user(
f"Choose an optimizer (Options: {'/'.join(compatible_optims)})",
compatible_optims[0],
)
lr_schedulers = ["polynomial", "constant"]
lr_scheduler = None
while lr_scheduler not in lr_schedulers:
if lr_scheduler:
print(f"Invalid learning rate scheduler: {lr_scheduler}")
lr_scheduler = prompt_user(
f"Set the learning rate scheduler. Options: {'/'.join(lr_schedulers)}",
lr_schedulers[0],
)
learning_rate = prompt_user(
"Set the learning rate",
(
learning_rates_by_rank[lora_rank]
if model_type == "lora"
else 1.0 if env_contents["--optimizer"] == "prodigy" else "1e-6"
),
)
lr_warmup_steps = prompt_user(
"Set the number of warmup steps before the learning rate reaches its peak. This is set to 10 percent of the total runtime by default, or 100 steps, whichever is higher.",
min(100, int(env_contents["--max_train_steps"]) // 10),
)
env_contents["--learning_rate"] = learning_rate
env_contents["--lr_scheduler"] = lr_scheduler
if lr_scheduler == "polynomial":
extra_args.append("--lr_end=1e-8")
env_contents["--lr_warmup_steps"] = lr_warmup_steps
quantization = (
prompt_user(
f"Would you like to enable model quantization? {'NOTE: Currently, a bug prevents multi-GPU training with LoRA' if use_lora else ''}. ([y]/n)",
"y",
).lower()
== "y"
)
if quantization:
if env_contents.get("--use_dora") == "true":
print("DoRA will be disabled for quantisation.")
del env_contents["--use_dora"]
quantization_type = None
while (
not quantization_type or quantization_type not in quantised_precision_levels
):
if quantization_type:
print(f"Invalid quantization type: {quantization_type}")
quantization_type = prompt_user(
f"Choose quantization type. (Options: {'/'.join(quantised_precision_levels)})",
"int8-quanto",
)
env_contents["--base_model_precision"] = quantization_type
print_config(env_contents, extra_args)
compress_disk_cache = (
prompt_user("Would you like to compress the disk cache? (y/n)", "y").lower()
== "y"
)
if compress_disk_cache:
extra_args.append("--compress_disk_cache")
# torch compile
torch_compile = (
prompt_user(
"Would you like to use torch compile during validations? (y/n)", "n"
).lower()
== "y"
)
env_contents["--validation_torch_compile"] = "false"
if torch_compile:
env_contents["--validation_torch_compile"] = "true"
# Summary and confirmation
print_config(env_contents, extra_args)
confirm = prompt_user("Does this look correct? (y/n)", "y").lower() == "y"
if confirm:
# Write to .env file
with open("config/config.json", "w") as env_file:
import json
env_file.write(json.dumps(env_contents, indent=4))
print("\nConfiguration file created successfully!")
else:
print("\nConfiguration aborted. No changes were made.")
import sys
sys.exit(1)
# dataloader configuration
default_local_configuration = [
{
"id": "PLACEHOLDER-512",
"type": "local",
"instance_data_dir": None,
"crop": False,
"crop_style": "random",
"minimum_image_size": 128,
"resolution": 512,
"resolution_type": "pixel_area",
"repeats": 10,
"metadata_backend": "discovery",
"caption_strategy": "filename",
"cache_dir_vae": "vae-512",
},
{
"id": "PLACEHOLDER-1024",
"type": "local",
"instance_data_dir": None,
"crop": False,
"crop_style": "random",
"minimum_image_size": 128,
"resolution": 1024,
"resolution_type": "pixel_area",
"repeats": 10,
"metadata_backend": "discovery",
"caption_strategy": "filename",
"cache_dir_vae": "vae-1024",
},
{
"id": "PLACEHOLDER-512-crop",
"type": "local",
"instance_data_dir": None,
"crop": True,
"crop_style": "random",
"minimum_image_size": 128,
"resolution": 512,
"resolution_type": "pixel_area",
"repeats": 10,
"metadata_backend": "discovery",
"caption_strategy": "filename",
"cache_dir_vae": "vae-512-crop",
},
{
"id": "PLACEHOLDER-1024-crop",
"type": "local",
"instance_data_dir": None,
"crop": True,
"crop_style": "random",
"minimum_image_size": 128,
"resolution": 1024,
"resolution_type": "pixel_area",
"repeats": 10,
"metadata_backend": "discovery",
"caption_strategy": "filename",
"cache_dir_vae": "vae-1024-crop",
},
{
"id": "text-embed-cache",
"dataset_type": "text_embeds",
"default": True,
"type": "local",
"cache_dir": "text",
},
]
# Let's offer to generate a prompt library for the user. Preserve their existing one if it already exists.
should_generate_by_default = "n"
if not os.path.exists("config/user_prompt_library.json"):
should_generate_by_default = "y"
should_generate_prompt_library = (
prompt_user(
(
"Would you like to generate a very rudimentary subject-centric prompt library for your dataset?"
" This will download a small 1B Llama 3.2 model."
" If a user prompt library exists, it will be overwritten. (y/n)"
),
should_generate_by_default,
).lower()
== "y"
)
if should_generate_prompt_library:
try:
user_caption_trigger = prompt_user(
"Enter a trigger word (or a few words) that you would like Llama 3.2 1B to expand.",
"Character Name",
)
number_of_prompts = int(
prompt_user("How many prompts would you like to generate?", 8)
)
from helpers.prompt_expander import PromptExpander
PromptExpander.initialize_model()
user_prompt_library = PromptExpander.generate_prompts(
trigger_phrase=user_caption_trigger, num_prompts=number_of_prompts
)
with open("config/user_prompt_library.json", "w", encoding="utf-8") as f:
f.write(json.dumps(user_prompt_library, indent=4))
print("Prompt library generated successfully!")
env_contents["--user_prompt_library"] = "config/user_prompt_library.json"
except Exception as e:
print(f"(warning) Failed to generate prompt library: {e}")
# now we ask user the path to their data, the path to the cache (cache/), number of repeats, update the id placeholder based on users dataset name
# then we'll write the file to multidatabackend.json
should_configure_dataloader = (
prompt_user("Would you like to configure your dataloader? (y/n)", "y").lower()
== "y"
)
if not should_configure_dataloader:
print("Skipping dataloader configuration.")
return
dataset_id = prompt_user(
"Enter the name of your dataset. This will be used to generate the cache directory. It should be simple, and not contain spaces or special characters.",
"my-dataset",
)
dataset_path = prompt_user(
"Enter the path to your dataset. This should be a directory containing images and text files for their caption. For reliability, use an absolute (full) path, beginning with a '/'",
"/datasets/my-dataset",
)
dataset_caption_strategy = prompt_user(
(
"How should the dataloader handle captions?"
"\n-> 'filename' will use the names of your image files as the caption"
"\n-> 'textfile' requires a image.txt file to go next to your image.png file"
"\n-> 'instanceprompt' will just use one trigger phrase for all images"
"\n"
"\n(Options: filename, textfile, instanceprompt)"
),
"textfile",
)
if dataset_caption_strategy not in ["filename", "textfile", "instanceprompt"]:
print(f"Invalid caption strategy: {dataset_caption_strategy}")
dataset_caption_strategy = "textfile"
dataset_instance_prompt = None
if "instanceprompt" in dataset_caption_strategy:
dataset_instance_prompt = prompt_user(
"Enter the instance_prompt you want to use for all images in this dataset",
"Character Name",
)
dataset_repeats = int(
prompt_user(
"How many times do you want to repeat each image in the dataset?", 10
)
)
dataset_cache_prefix = prompt_user(
"Where will your VAE and text encoder caches be written to? Subdirectories will be created inside for you automatically.",
"cache/",
)
has_very_large_images = (
prompt_user(
"Do you have very-large images in the dataset (eg. much larger than 1024x1024)? (y/n)",
"n",
).lower()
== "y"
)
# Now we'll modify the default json and if has_very_large_images is true, we will add two keys to each image dataset, 'maximum_image_size' and 'target_downsample_size' equal to the dataset's resolution value
for dataset in default_local_configuration:
if dataset.get("dataset_type") == "text_embeds":
dataset["cache_dir"] = f"{dataset_cache_prefix}/{dataset['cache_dir']}"
continue
dataset["instance_data_dir"] = dataset_path
dataset["repeats"] = dataset_repeats
dataset["cache_dir_vae"] = f"{dataset_cache_prefix}/{dataset['cache_dir_vae']}"
if has_very_large_images:
dataset["maximum_image_size"] = dataset["resolution"]
dataset["target_downsample_size"] = dataset["resolution"]
dataset["id"] = dataset["id"].replace("PLACEHOLDER", dataset_id)
if dataset_instance_prompt:
dataset["instance_prompt"] = dataset_instance_prompt
dataset["caption_strategy"] = dataset_caption_strategy
print("Dataloader configuration:")
print(default_local_configuration)
confirm = prompt_user("Does this look correct? (y/n)", "y").lower() == "y"
if confirm:
import json
with open("config/multidatabackend.json", "w", encoding="utf-8") as f:
f.write(json.dumps(default_local_configuration, indent=4))
print("Dataloader configuration written successfully!")
if __name__ == "__main__":
configure_env()