-
Notifications
You must be signed in to change notification settings - Fork 27
/
limo_check_weight.m
490 lines (448 loc) · 22 KB
/
limo_check_weight.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
function limo_check_weight(LIMO_files, expected_chanlocs, varargin)
% general function designed to look at the weights computed for each trial
% at the each channel for each subject
%
% FORMAT limo_CheckWeight(list_of_LIMO.mat,expected_chanlocs)
% limo_CheckWeight(list_of_LIMO.mat,expected_chanlocs,'CheckBias','on','TestDifference','on','SingleSubjectAnalysis','off','PlotRank','off')
%
% INPUT list_of_LIMO.mat empty [] calls a gui to select a txt file
% txt file listing where the LIMO.mat are located
% cell array listing where the LIMO.mat are located
%
% expected_chanlocs the default channel locations for all subject
%
% options 'PlotRank' is 'on' (default) or 'off'
% since weights are between 0 and 1, it computes the average response for each decile
% 'TestDifference' is 'on' (default) or 'off' to compute an OLS between the good trials (weights = 1/0.9)
% and the outliers (by reverse engineering the weights to outlier detection)
% 'CheckBias' is 'on' (default) or 'off' to check that the weights are distributed across trials in a uniform manner,
% i.e. that not one conditions is more affected than another which would bias the results, but
% also indicate that something is going on in the data
% 'SingleSubjectAnalysis' is 'on' or 'off' (default) to perform ttests subject wise
% (difference may exist but not consistent across subjects)
%
% OUTPUT creates a folder called 'Weights_checking' with the different
% results in it
%
% Cyril Pernet January 2021
% -----------------------------
% Copyright (C) LIMO Team 2021
%% if no input do it all
limo = struct('PlotRank','on','TestDifference','on','CheckBias','on','SingleSubjectAnalysis','off');
if nargin == 0
% list of LIMO files
[~,~,LIMO_files] = limo_get_files([],'*txt','choose a list of LIMO files');
if isempty(LIMO_files)
return
end
end
%% input checks
if isempty(LIMO_files)
[~,~,LIMO_files] = limo_get_files([],'*txt','choose a list of LIMO files');
elseif ischar(LIMO_files)
files = textread(LIMO_files,'%s','delimiter',''); % select a txt file listing all files
clear LIMO_files
for f=1:size(files,1)
LIMO_files{f} = files{f};
end
end
% those files are there?
warning on
for f = length(LIMO_files):-1:1
if ~exist(LIMO_files{f},'file')
error([LIMO_files{f} ' doesn''t exist'])
end
[limo_paths{f},name,ext]=fileparts(LIMO_files{f});
if ~strcmp([name ext],'LIMO.mat')
% might still be a list, user may have pick the wrong one
if exist(fullfile(limo_paths{f},"LIMO.mat"))
LIMO_files{f} = fullfile(limo_paths{f},"LIMO.mat");
warning('wrong selection, changed %s.mat to LIMO.mat',name)
else
error([LIMO_files{f} ' is not a LIMO.mat file'])
end
end
LIMO_sub = load(LIMO_files{f});
LIMO_sub = LIMO_sub.LIMO;
if f==length(LIMO_files) % 1st in the loop
limo.Analysis = LIMO_sub.Analysis;
limo.Type = LIMO_sub.Type;
else % compare between LIMO files
if limo.Analysis ~= LIMO_sub.Analysis
limo_errordlg('Looks like different type of analyses (Time/Freq/Time-Freq) are mixed up')
return
end
if limo.Type ~= LIMO_sub.Type
limo_errordlg('Looks like different type of analyses (Channels/Components) are mixed up');
return
end
end
estimation{f} = LIMO_sub.design.method;
end
estimation_check = cellfun(@(x) strcmpi(x,'OLS'), estimation);
if any(estimation_check)
limo_errordlg('Can''t compute: at least one subject was estimated using OLS (weights = 1)')
warning(sprintf('suject %g model was estimated using OLS\n',find(estimation_check))); %#ok<SPWRN>
return
end
if strcmpi(limo.Type,'Channels')
[to_load,path] = uigetfile2('expected_chanlocs.mat','load chanlocs');
if to_load == 0
warning('selection cancelled'); return
end
chan = load([path to_load]);
limo.data.chanlocs = chan.expected_chanlocs;
limo.data.neighbouring_matrix = chan.channeighbstructmat;
end
if ~isfield(limo,'data')
if nargin >= 2
chan = load(expected_chanlocs);
else
[to_load,path] = uigetfile2('*mat','load chanlocs');
chan = load([path to_load]);
end
try
limo.data.chanlocs = chan.expected_chanlocs;
limo.data.neighbouring_matrix = chan.channeighbstructmat;
catch different_names
limo_warndlg(sprintf('couldn''t read chanlocs: %s',different_names.message))
FN = fieldnames(chan);
for i=1:length(FN)
if isstruct(chan.(FN{i}))
limo.data.chanlocs = chan.(FN{i});
elseif ismatrix(chan.(FN{i}))
limo.data.neighbouring_matrix = chan.(FN{i});
end
end
end
end
if ~isempty(varargin)
for n=1:length(varargin)
if strcmpi(varargin{n},'plotrank')
limo.PlotRank = varargin{n+1};
end
if strcmpi(varargin{n},'testdifference')
limo.TestDifference = varargin{n+1};
end
if strcmpi(varargin{n},'checkbias')
limo.CheckBias = varargin{n+1};
end
if strcmpi(varargin{n},'singlesubjectanalysis')
limo.SingleSubjectAnalysis = varargin{n+1};
end
end
end
% -----------
% Compute
% ----------
[~,current] = fileparts(pwd);
if ~strcmpi(current,'Weights_checking')
if exist(fullfile(pwd,'Weights_checking'),'dir')
cd('Weights_checking');
else
mkdir('Weights_checking'); cd('Weights_checking');
end
end
LIMO.dir = pwd;
if isfield(limo,'data') % chanlocs & neighbouring_matrix
[~,~,subj_chanlocs,limo] = limo_match_frames(limo_paths,limo);
end
%% Compute
if strcmpi(limo.Analysis,'Time-Frequency')
data = NaN(size(limo.data.chanlocs,2),(limo.data.highf-limo.data.lowf+1),(limo.data.trim2-limo.data.trim1+1),length(LIMO_files),10);
difference = NaN(size(data,1),size(data,2),size(data,3),size(data,4));
else
data = NaN(size(limo.data.chanlocs,2),(limo.data.trim2-limo.data.trim1+1),length(LIMO_files),10);
difference = NaN(size(data,1),size(data,2),size(data,3));
end
for f=1:length(LIMO_files)
fprintf('processing data subject %g\n',f)
LIMO_sub = load(LIMO_files{f});
LIMO_sub = LIMO_sub.LIMO;
W{f} = LIMO_sub.design.weights;
Yr = load([LIMO_sub.dir filesep 'Yr.mat']);
Yr = Yr.Yr;
%% make averages
if strcmp(limo.PlotRank,'on')
if strcmpi(limo.Analysis,'Time-Frequency')
array = find(~isnan(Yr(:,1,1,1))); % skip empty electrodes
tmp = NaN(size(Yr,1),size(Yr,2),size(Yr,3),10);
for e=1:length(array)
for freq = 1:size(Yr,2)
if strcmpi(LIMO_sub.design.method,'WLS')
meanw = squeeze(W{f}(e,freq,:));
elseif strcmpi(LIMO_sub.design.method,'IRLS')
meanw = mean(squeeze(W{f}(e,freq,:,:)),1); % mean over time
end
% compute mean per quantile
Q = quantile(meanw,10);
for w=1:10
if w == 1
index = meanw <= Q(w);
elseif w == 10
index = meanw > Q(w);
else
index = logical((meanw>(Q(w-1))) .* (meanw<=(Q(w))));
end
tmp(e,:,w) = mean(Yr(e,:,index),3);
end
data(:,freq,:,f,:) = limo_match_elec(subj_chanlocs(f).chanlocs,chan.expected_chanlocs,1,size(Yr,2),tmp);
end
end
else
array = find(~isnan(Yr(:,1,1))); % skip empty electrodes
tmp = NaN(size(Yr,1),size(Yr,2),10);
for e=1:length(array)
if strcmpi(LIMO_sub.design.method,'WLS')
meanw = squeeze(W{f}(e,:));
elseif strcmpi(LIMO_sub.design.method,'IRLS')
meanw = mean(squeeze(W{f}(e,:,:)),1); % mean ove time
end
% compute mean per quantile
Q = quantile(meanw,10);
for w=1:10
if w == 1
index = meanw <= Q(w);
elseif w == 10
index = meanw > Q(w);
else
index = logical((meanw>(Q(w-1))) .* (meanw<=(Q(w))));
end
tmp(e,:,w) = mean(Yr(e,:,index),3);
end
end
data(:,:,f,:) = limo_match_elec(subj_chanlocs(f).chanlocs,chan.expected_chanlocs,1,size(Yr,2),tmp);
end
% save using the same format as limo_central_tendency, then call
% limo_add_plots to make the figure - only parameters and subjedcts are
% reversed because we want to plot per subjects and not per parameters
if f==length(LIMO_files)
clear Data; Data.data = data;
Data.limo = limo; Data.limo.Level = 2;
save subjects_weighted_data Data
end
end % close rank computation
%% t-test good vs outliers
if f == 1 && strcmpi(limo.SingleSubjectAnalysis,'on')
LIMO.design.method = 'Mean';
LIMO.Level = 2;
LIMO.Analysis = limo.Analysis;
LIMO.Type = limo.Type;
end
% is there a difference between the outlier trials and the best trials
if strcmp(limo.TestDifference,'on') || strcmpi(limo.SingleSubjectAnalysis,'on')
if strcmpi(limo.Analysis,'Time-Frequency')
[chan,freq,time,tr]=size(Yr);
Yr = limo_tf_4d_reshape(Yr,[chan freq*time tr]);
end
tmp = NaN(size(Yr,1),size(Yr,2));
for e=1:size(Yr,1)
if strcmpi(LIMO_sub.design.method,'WLS')
Q = quantile(W{f}(e,:),10);
index1 = find(W{f}(e,:) <=Q(1));
index2 = find(W{f}(e,:) >=Q(10));
elseif strcmpi(LIMO_sub.design.method,'IRLS')
Q = quantile(mean(squeeze(W{f}(e,:,:)),1),10);
index1 = find(mean(squeeze(W{f}(e,:,:)),1) <=Q(1));
index2 = find(mean(squeeze(W{f}(e,:,:)),1) >=Q(10));
end
for expected=1:size(limo.data.chanlocs,2)
if strcmp(LIMO_sub.data.chanlocs(e).labels,limo.data.chanlocs(expected).labels)
difference(expected,:,f) = mean(squeeze(Yr(e,:,index1)),2) - mean(squeeze(Yr(e,:,index2)),2);
% rather than mean, we can test differences per subjects on trials
if strcmpi(limo.SingleSubjectAnalysis,'on')
if f == 1 && e==1 % first subject
mkdir('single_subjects'); cd('single_subjects');
end
if e==1 % first channel
if contains(LIMO_sub.dir,'sub-')
nb = LIMO_sub.dir(strfind(LIMO_sub.dir,'sub-')+4:end);
nb = nb(1:min(strfind(nb,filesep))-1);
mkdir(['sub-' nb]); cd(['sub-' nb])
else
mkdir(['sub-' num2str(f)]); cd(['sub-' num2str(f)])
end
end
[two_samples(e,:,1),two_samples(e,:,3),~,sd,~,two_samples(e,:,4),two_samples(e,:,5)] = ...
limo_ttest(2, squeeze(Yr(e,:,index1)), squeeze(Yr(e,:,index2)), 0.05);
sd = sd.^2; a = sd(1,:)./length(index1); b = sd(1,:)./length(index2);
two_samples(e,:,2) = sqrt(a + b);
end
end
end
end
if strcmpi(limo.SingleSubjectAnalysis,'on')
if strcmp(LIMO_sub.Analysis,'Time-Frequency') || strcmp(LIMO_sub.Analysis,'ITC')
two_samples = limo_tf_4d_reshape(two_samples);
end
save ('ttest_good_vs_outliers_trials','two_samples', '-v7.3')
LIMO.dir = pwd; save(fullfile(LIMO.dir,'LIMO.mat'));
Y1r = Yr(:,:,index1); save Y1r Y1r; clear Y1r
Y2r = Yr(:,:,index2); save Y2r Y2r; clear Y2r
% some trial metrics
[DT1,TP1,AC1] = limo_trialmetric(Yr(:,:,index1),'std_time','on','power','on',...
'autocorrelation','on','sampling_frequency',LIMO_sub.data.sampling_rate);
[DT2,TP2,AC2] = limo_trialmetric(Yr(:,:,index2),'std_time','on','power','on',...
'autocorrelation','on','sampling_frequency',LIMO_sub.data.sampling_rate);
% finally pick the channel with the most variance
[~,maxchannels(f)]=max(mean(squeeze(two_samples(:,:,2)),2));
N = max(length(index1),length(index2)); X = NaN(N,8);
X(1:length(index1),1:4) = [index1' DT1(maxchannels(f),:)',TP1(maxchannels(f),:)',AC1(maxchannels(f),:)'];
X(1:length(index2),5:8) = [index2' DT2(maxchannels(f),:)',TP2(maxchannels(f),:)',AC2(maxchannels(f),:)'];
t = table(X(:,1),X(:,2),X(:,3),X(:,4),X(:,5),X(:,6),X(:,7),X(:,8),'VariableNames',...
{'low_weight_trials', 'time_var_lt', 'power_lt', 'autocorr_lt', ...
'high_weight_trials','time_var_ht', 'power_ht', 'autocorr_ht'});
writetable(t,['metrics_maxchannel' num2str(maxchannels(f)) '.csv']);
SM(f,:) = nanmedian(X(:,[2 3 4 6 7 8]));
SMT(f,:) = [median(DT1(:)) median(TP1(:)) median(AC1(:)) median(DT2(:)) median(TP2(:)) median(AC2(:))];
cd .. ;
% where are those channels
if f==length(LIMO_files)
t = table(SM(:,1),SM(:,2),SM(:,3),SM(:,4),SM(:,5),SM(:,6),'VariableNames',...
{'time_var_lt', 'power_lt', 'autocorr_lt', ...
'time_var_ht', 'power_ht', 'autocorr_ht'});
writetable(t,'mean_metrics_maxchannels.csv');
t = table(SMT(:,1),SMT(:,2),SMT(:,3),SMT(:,4),SMT(:,5),SMT(:,6),'VariableNames',...
{'time_var_lt', 'power_lt', 'autocorr_lt', ...
'time_var_ht', 'power_ht', 'autocorr_ht'});
writetable(t,'mean_metrics_allchannels.csv');
% locations
data = zeros(1,length(limo.data.chanlocs));
for s=1:length(LIMO_files)
data(maxchannels(s)) = data(maxchannels(s))+1;
end
all = unique(data); all(1) = [];
save maxchannels maxchannels
% create the frequency map
h = figure('Color','w','NumberTitle','off','Name','limo_tools: best electrode frequency map');
[~,grid_or_val]= topoplot( data,limo.data.chanlocs,'style','both','electrodes','off','hcolor','none','numcontour',0,'whitebk','on','noplot','on','conv','on');
freqmap = grid_or_val(end:-1:1,:); % reverse row order to get back of the head at the bottom of the image
freqmap = freqmap + abs(min(freqmap(:))); % min 0
imagesc(freqmap,[0 max(freqmap(:))])
axis tight;axis square;axis off
colormap(limo_color_images(freqmap));
title(sprintf('max variance channels from %g to %g subjects',min(all),max(all)));
try saveas(gcf, 'max_var_channels.fig','fig'); end
cd ..;
end
end
if f== length(LIMO_files)
mkdir('trial_differences'); cd('trial_differences'); save Yr difference;
% stats
disp('Computing t-test between good and bad trials across all conditions')
LIMO = limo; LIMO.dir = pwd; LIMO.Level = 2; LIMO.design.bootstrap = 1000;
LIMO.design.electrode = []; LIMO.design.name = 'one sample ttest';
LIMO.design.type_of_analysis = 'Mass-univariate'; LIMO.design.tfce = 0;
save LIMO LIMO; limo_random_robust(1,fullfile(LIMO.dir,'Yr.mat'),0,LIMO);
movefile(fullfile(LIMO.dir,'one_sample_ttest_parameter_0.mat'),...
fullfile(LIMO.dir,'one_sample_ttest_low_vs_high_weight_trials.mat'));
movefile(fullfile(LIMO.dir,[filesep 'H0' filesep 'H0_one_sample_ttest_parameter_0.mat']),...
fullfile(LIMO.dir,[filesep 'H0' filesep 'H0_one_sample_ttest_low_vs_high_weight_trials.mat']));
cd ..; clear LIMO;
end
end % close test difference
%% Bias analysis
if strcmp(limo.CheckBias,'on')
if LIMO_sub.design.nb_conditions == 0
sprintf('skipping bias test, there are no conditions, subject %g \n',f);
else
if LIMO_sub.design.nb_interactions ~= 0
tmpX = LIMO_sub.design.X(:,sum(LIMO_sub.design.nb_conditions):(size(LIMO_sub.design.X,2)-LIMO_sub.design.nb_continuous));
elseif LIMO_sub.design.nb_interactions == 0 && length(LIMO_sub.design.nb_conditions)>1
[tmpX,~] = limo_make_interactions(LIMO_sub.design.X, LIMO_sub.design.nb_conditions);
else
tmpX = LIMO_sub.design.X(:,1:LIMO_sub.design.nb_conditions);
end
% tmpX is always a matrix with one column per condition, no
% matter the design - we want to know if the weights are
% distributed equally
if strcmpi(limo.Analysis,'Time-Frequency')
% LIMO.data.4d
tmp = NaN(size(W{f},1),size(Yr,2),size(tmpX,2));
for expected=1:size(chan.expected_chanlocs,2)
for e=1:size(W{f},1)
if strcmp(LIMO_sub.data.chanlocs(e).labels,chan.expected_chanlocs(expected).labels)
for f=1:size(Yr,2)
for c=1:size(tmpX,2)
tmp(expected,f,c) = mean(W{f}(e,f,logical(tmpX(:,c))));
end
end
end
end
end
else
if strcmpi(LIMO_sub.design.method,'WLS')
tmp = NaN(size(chan.expected_chanlocs,2),size(tmpX,2));
elseif strcmpi(LIMO_sub.design.method,'IRLS')
tmp = NaN(size(chan.expected_chanlocs,2),size(Yr,2),size(tmpX,2));
end
for expected=1:size(chan.expected_chanlocs,2)
for e=1:size(W{f},1)
if strcmp(LIMO_sub.data.chanlocs(e).labels,chan.expected_chanlocs(expected).labels)
for c=1:size(tmpX,2)
if strcmpi(LIMO_sub.design.method,'WLS')
tmp(expected,c) = mean(W{f}(e,logical(tmpX(:,c))));
elseif strcmpi(LIMO_sub.design.method,'IRLS')
for frame = 1:size(W{f},2)
tmp(expected,frame,c) = mean(W{f}(e,frame,logical(tmpX(:,c))));
end
end
end
end
end
end
end
end
Bias{f} = tmp;
if f==length(LIMO_files)
if strcmpi(LIMO_sub.design.method,'WLS') && length(unique(cell2mat(cellfun(@size,Bias,'UniformOutput',false)'))) ~=2 || ...
strcmpi(LIMO_sub.design.method,'IRLS') && length(unique(cell2mat(cellfun(@size,Bias,'UniformOutput',false)'))) ~=3
disp('the computed bias matrices are in the workspace'); assignin('base','Bias',Bias);
error('It is likely not all subjects have the same number of conditions, conversion from cell to mat impossible - Bias analysis stopped')
else
factor_nb = size(tmpX,2);
if strcmpi(LIMO_sub.design.method,'WLS')
Yr = NaN(length(limo.data.chanlocs),1,f,factor_nb);
for s=1:f
for e=1:length(limo.data.chanlocs)
Yr(e,1,s,:)=Bias{s}(e,:); % single frame
end
end
elseif strcmpi(LIMO_sub.design.method,'IRLS')
Yr = NaN(length(limo.data.chanlocs),size(Yr,2),f,factor_nb);
for s=1:f
for e=1:length(limo.data.chanlocs)
Yr(e,:,s,:)=Bias{s}(e,:,:);
end
end
end
end
% stats
disp('Testing for bias across all conditions')
LIMO = limo; mkdir('Bias testing');
cd('Bias testing');
LIMO.dir = pwd;
LIMO.Level = 2;
LIMO.data_dir = pwd;
LIMO.data.data = LIMO_files;
LIMO.data.start = 1;
LIMO.data.end = 1;
LIMO.data.trim1 = 0;
LIMO.data.trim2 = 0;
LIMO.design.electrode = [];
LIMO.design.name = 'Rep_ANOVA';
LIMO.design.neighbouring_matrix = chan.channeighbstructmat;
LIMO.design.bootstrap =1000;
LIMO.design.tfce = 0;
save LIMO LIMO;
save Yr Yr; clear Bias
limo_random_robust(6,Yr,ones(size(Yr,3),1),factor_nb,LIMO,'go','Yes');
try close('Design matrix'); end
end
end % close bias
end
cd ..
disp('analysis done')
disp('Plot central tendency to check weights per subject and decile')
disp('view results ''all'' for outliers and bias')
limo_results