-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNOBIAS_plot.m
111 lines (103 loc) · 3.71 KB
/
NOBIAS_plot.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
function Results=NOBIAS_plot(out,data, Params)
Niter=length(out.L);
if nargin<3
Params.frametime=0.04; %s
Params.pixelsize=0.049; %um
Params.Plot=1;
Params.MotionBlur=1;%whether to do the motion blur correction, need data to have corr_obs
Params.SampleSaveFreq=10;
end
SampleSaveFreq=Params.SampleSaveFreq;
c=colormap('lines');
state_num=mode(out.L(end-5000:end));
burn=1000;
used_state=unique(out.stateSeq);
savd_L=out.L(rem(1:Niter,SampleSaveFreq)==0);
Sampled_sigma=out.theta.Sigma(savd_L==state_num);
Sampled_sigma=Sampled_sigma(burn+1:end);
Sampled_weight=out.theta.Weight(savd_L==state_num);
Sampled_weight=Sampled_weight(burn+1:end);
Sampled_Trans=out.trans_struct.Trans(savd_L==state_num);
Sampled_Trans=Sampled_Trans(burn+1:end);
[~, L_Ranked]=sort(Sampled_sigma{end}(1,1,used_state),'ascend');
used_state=used_state(L_Ranked);
% whether to calculate the diffusion coefficents for both directions
asymeteric=0;
frametime=Params.frametime; %s
pixelsize=Params.pixelsize; %um
if Params.MotionBlur
Corrsteps=data.obs_corr;
corrMu=zeros(2,length(used_state));
for ii=1:length(used_state)
cur_corrsteps=Corrsteps(:,out.stateSeq==used_state(ii));
corrMu(:,ii)=mean(cur_corrsteps,2,'omitnan');
end
corrMu_mean=mean(corrMu,1);
end
Allweight=zeros(length(Sampled_weight),length(used_state));
AllTran=zeros(length(Sampled_weight),length(used_state),length(used_state));
if ~asymeteric
AllSigma=zeros(length(Sampled_weight),length(used_state));
AllD=zeros(length(Sampled_weight),length(used_state));
for i=1:length(Sampled_weight)
tempSig=Sampled_sigma{i};
Allweight(i,:)=Sampled_weight{i}(used_state);
AllTran(i,:,:)=Sampled_Trans{i}(used_state,used_state);
AllSigma(i,:)=(tempSig(1,1,used_state)+tempSig(2,2,used_state))/2;
if Params.MotionBlur
AllD(i,:)=(AllSigma(i,:) + 2*corrMu_mean)/2/frametime*pixelsize*pixelsize;
else
AllD(i,:)=AllSigma(i,:)/2/frametime*pixelsize*pixelsize;
end
end
else
AllSigma=zeros(length(Sampled_weight),length(used_state),2);
AllD=zeros(length(Sampled_weight),length(used_state),2);
for i=1:length(Sampled_weight)
tempSig=Sampled_sigma{i};
Allweight(i,:)=Sampled_weight{i}(used_state);
AllTran(i,:,:)=Sampled_Trans{i}(used_state,used_state);
AllSigma(i,:,1)=tempSig(1,1,used_state);
AllSigma(i,:,2)=tempSig(2,2,used_state);
if Params.MotionBlur
AllD(i,:,1)=(AllSigma(i,:,1) + 2*corrMu(1,:))/2/frametime*pixelsize*pixelsize;
AllD(i,:,2)=(AllSigma(i,:,2) + 2*corrMu(2,:))/2/frametime*pixelsize*pixelsize;
else
AllD(i,:,1)=AllSigma(i,:,1)/2/frametime*pixelsize*pixelsize;
AllD(i,:,2)=AllSigma(i,:,2)/2/frametime*pixelsize*pixelsize;
end
end
end
if Params.Plot
plot(out.L);
title('state number convergence')
xlabel('iterations');
ylabel('state number')
ylim([1 10])
figure
hold on
if ~asymeteric
for j=1:length(used_state)
scatter(Allweight(:,j),AllD(:,j),7,c(j,:),'filled');
end
else
for j=1:length(used_state)
scatter(Allweight(:,j),AllD(:,j,1),7,c(j,:),'filled');
scatter(Allweight(:,j),AllD(:,j,2),7,c(j,:),'filled');
end
end
set(gca,'yscale','log')
axis tight
xlim([0 1]);
ylim([0.005,5]);
ylabel('Diffusion coefficients, um2/s')
xlabel('Weight Fraction')
hold off
end
Results.AllD=AllD;
Results.Allweight=Allweight;
Results.AllTran=AllTran;
Results.D=mean(AllD,1);
Results.Weight=mean(Allweight);
Results.Trans=squeeze(mean(AllTran,1));
end