Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

MOTA & IDF1 in MOT Challenges #12

Open
PLester opened this issue Dec 24, 2020 · 4 comments
Open

MOTA & IDF1 in MOT Challenges #12

PLester opened this issue Dec 24, 2020 · 4 comments

Comments

@PLester
Copy link

PLester commented Dec 24, 2020

请问一下这套方案在MOT数据集,例如MOT15 MOT17 MOT20中的性能如何,是否获得了比FairMOT等one-stage的方法更好的性能,另外这套方案大概的计算时间(Hz)是多少?
非常感谢!

@KeyForce
Copy link
Owner

  • 没有在MOT的数据集上面测试过,但是在MOT的数据集上训练目标检测,效果比Crowdhuman差,
  • 比FairMOT等one-stage的方法性能提升幅度巨大,一般来说私有检测器性能对跟踪影响最大,详细你可以观察一下MOT Public和Private赛道的精度对比。
  • 这个方案速度比较慢,推理FPS为5以下,即1S跑5张以下。

@PLester
Copy link
Author

PLester commented Dec 27, 2020

@KeyForce Thanks for your reply!

@hh23333
Copy link

hh23333 commented May 19, 2021

  • 没有在MOT的数据集上面测试过,但是在MOT的数据集上训练目标检测,效果比Crowdhuman差,
  • 比FairMOT等one-stage的方法性能提升幅度巨大,一般来说私有检测器性能对跟踪影响最大,详细你可以观察一下MOT Public和Private赛道的精度对比。
  • 这个方案速度比较慢,推理FPS为5以下,即1S跑5张以下。

您好,想问一下,您没在MOT上测试过,是在什么数据集比FairMoT效果好的

@KeyForce
Copy link
Owner

比较的是中兴提供的参赛数据集。
MOT数据在数量上比Crowdhuman少很多,并且数据质量也差挺多的。

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants