-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathLidarColorMapper.cpp
653 lines (579 loc) · 20.4 KB
/
LidarColorMapper.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
/***********************************************************************
LidarColorMapper - Post-processing filter to assign image colors to each
point in a LiDAR data set.
Copyright (c) 2009-2013 Oliver Kreylos
This file is part of the LiDAR processing and analysis package.
The LiDAR processing and analysis package is free software; you can
redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
The LiDAR processing and analysis package is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with the LiDAR processing and analysis package; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA
***********************************************************************/
#include <utility>
#include <string>
#include <vector>
#include <iostream>
#include <iomanip>
#include <Misc/ThrowStdErr.h>
#include <Misc/HashTable.h>
#include <Misc/FileNameExtensions.h>
#include <IO/File.h>
#include <IO/OpenFile.h>
#include <IO/ValueSource.h>
#include <Geometry/Point.h>
#include <Geometry/Box.h>
#include <Geometry/AffineTransformation.h>
#include <Geometry/ProjectiveTransformation.h>
#include <Geometry/LambertConformalProjection.h>
#include <Geometry/UTMProjection.h>
#include <Geometry/OutputOperators.h>
#include <Images/RGBImage.h>
#include <Images/GetImageFileSize.h>
#include <Images/ReadImageFile.h>
#include "LidarTypes.h"
#include "LidarProcessOctree.h"
/*******************************************************************
Class to represent color images with 2D projection into world space:
*******************************************************************/
class Image2D
{
/* Embedded classes: */
public:
typedef Geometry::Point<double,2> Point; // Type for world and image points
typedef Geometry::Box<double,2> Box; // Type for boxes in world and image space
typedef Geometry::AffineTransformation<double,2> Transform; // Type for image transformations
typedef Images::RGBImage::Color Color; // Type for image colors
typedef std::pair<bool,Color> SampleResult; // Type for results of sampling an image
/* Elements: */
private:
std::string fileName; // The image's file name
unsigned int size[2]; // The image's width and height in pixels
Transform transform; // The transformation from image coordinates to world coordinates
Transform invTransform; // The transformation from world coordinates to image coordinates
Box imageBox; // Bounding box of image in image coordinates
Box worldBox; // Bounding box of image in world coordinates
Images::RGBImage image; // Image data; invalid if image is not paged in
/* Constructors and destructors: */
public:
Image2D(const char* sFileName); // Loads an image and world space information from a set of files
/* Methods: */
const unsigned int* getSize(void) const // Returns the image's size in pixels
{
return size;
}
const Box& getWorldBox(void) const // Returns the image's bounding box in world space
{
return worldBox;
}
void pageIn(void); // Ensures that the image's data resides in main memory
void pageOut(void); // Releases the image's data from main memory
SampleResult getColor(const Point& worldPos) const; // Returns the image's color for the given point in world coordinates
};
/************************
Methods of class Image2D:
************************/
Image2D::Image2D(const char* sFileName)
:fileName(sFileName)
{
/* Construct the file name of the world space metafile: */
const char* extPtr=Misc::getExtension(fileName.c_str());
std::string worldFileName=std::string(fileName.c_str(),extPtr)+".tfw";
/* Read the world space metafile: */
IO::ValueSource world(IO::openFile(worldFileName.c_str()));
world.skipWs();
for(int j=0;j<3;++j)
for(int i=0;i<2;++i)
transform.getMatrix()(i,j)=world.readNumber();
/* Determine the image size: */
Images::getImageFileSize(fileName.c_str(),size[0],size[1]);
/* Flip the transformation: */
for(int i=0;i<2;++i)
{
transform.getMatrix()(i,1)=-transform.getMatrix()(i,1);
transform.getMatrix()(i,2)-=transform.getMatrix()(i,1)*double(size[1]-1);
}
/* Calculate the inverse transformation: */
invTransform=Geometry::invert(transform);
/* Calculate the bounding box in image space: */
imageBox.min=Point::origin;
imageBox.max=Point(double(size[0]-1),double(size[1]-1));
/* Calculate the bounding box in world space: */
worldBox=imageBox;
worldBox.transform(transform);
/* Print the world space bounding box: */
std::cout<<"World space bounding box: "<<worldBox.min<<", "<<worldBox.max<<std::endl;
}
void Image2D::pageIn(void)
{
if(!image.isValid())
{
/* Load the image file: */
std::cout<<"\rPaging in image file "<<fileName<<"..."<<std::flush;
image=Images::readImageFile(fileName.c_str());
std::cout<<" done"<<std::endl;
}
}
void Image2D::pageOut(void)
{
/* Replace the image with an invalid image: */
std::cout<<"\rPaging out image file "<<fileName<<std::endl;
image=Images::RGBImage();
}
Image2D::SampleResult Image2D::getColor(const Image2D::Point& worldPos) const
{
/* Transform the world position to image space: */
Point imagePos=invTransform.transform(worldPos);
/* Bail out if the image position is outside the image: */
if(imagePos[0]<imageBox.min[0]||imagePos[0]>=imageBox.max[0]||imagePos[1]<imageBox.min[1]||imagePos[1]>=imageBox.max[1])
return SampleResult(false,Color(0,0,0));
/* Sample the image: */
unsigned int cx=(unsigned int)imagePos[0];
double dx=imagePos[0]-double(cx);
unsigned int cy=(unsigned int)imagePos[1];
double dy=imagePos[1]-double(cy);
const Color* r0=image.getPixelRow(cy);
const Color* r1=image.getPixelRow(cy+1);
double p0[3],p1[3];
for(int i=0;i<3;++i)
{
p0[i]=double(r0[cx][i])*(1.0-dx)+double(r0[cx+1][i])*dx;
p1[i]=double(r1[cx][i])*(1.0-dx)+double(r1[cx+1][i])*dx;
}
Color result;
for(int i=0;i<3;++i)
{
double v=p0[i]*(1.0-dy)+p1[i]*dy;
if(v<0.5)
result[i]=Color::Scalar(0);
else if(v>=254.5)
result[i]=Color::Scalar(255);
else
result[i]=Color::Scalar(v+0.5);
}
return SampleResult(true,result);
}
/************************************************
Helper class to manage an LRU cache of 2D images:
************************************************/
class ImageCacher
{
/* Embedded classes: */
private:
struct LRUItem // Structure for least-recently-used list items
{
/* Elements: */
Image2D* image; // Pointer to the image
size_t imageSize; // Image memory footprint in bytes
bool pagedIn; // Flag if the image's data are currently residing in main memory
unsigned int pageInCounter; // Request counter value at which this image was last paged in
LRUItem* pred; // Pointer to preceding entry in LRU list
LRUItem* succ; // Pointer to succeeding entry in LRU list
};
/* Elements: */
private:
size_t maxMemory; // Allocated amount of memory in bytes
Misc::HashTable<Image2D*,LRUItem*> lruMap; // Map from image pointers to least-recently-used list items
LRUItem* lruHead; // Pointer to the least-recently-used image
LRUItem* lruTail; // Pointer to the most-recently-used image
size_t usedMemory; // Currently used amount of memory in bytes
unsigned int requestCounter; // Counter to keep track of cache memory overflow
unsigned int numPageInRequests; // Total number of times an image was loaded into memory
/* Constructors and destructors: */
public:
ImageCacher(size_t sMaxMemory); // Creates an image cacher with the given memory size in bytes
~ImageCacher(void);
/* Methods: */
void registerImage(Image2D* image); // Registers an image with the cache manager
void requestImages(const std::vector<Image2D*>& images); // Requests in-memory access to the given set of images
unsigned int getNumPageInRequests(void) const
{
return numPageInRequests;
}
};
/****************************
Methods of class ImageCacher:
****************************/
ImageCacher::ImageCacher(size_t sMaxMemory)
:maxMemory(sMaxMemory),
lruMap(101),
lruHead(0),lruTail(0),
usedMemory(0),
requestCounter(0),
numPageInRequests(0)
{
}
ImageCacher::~ImageCacher(void)
{
/* Destroy all LRU list items: */
for(Misc::HashTable<Image2D*,LRUItem*>::Iterator lmIt=lruMap.begin();!lmIt.isFinished();++lmIt)
delete lmIt->getDest();
}
void ImageCacher::registerImage(Image2D* image)
{
/* Create a new LRU list item: */
LRUItem* newItem=new LRUItem;
newItem->image=image;
newItem->imageSize=size_t(image->getSize()[1])*size_t(image->getSize()[0])*sizeof(Image2D::Color);
newItem->pagedIn=false;
newItem->pred=0;
newItem->succ=0;
/* Store the LRU list item in the item map: */
lruMap[image]=newItem;
}
void ImageCacher::requestImages(const std::vector<Image2D*>& images)
{
/* Add all images in the list to the LRU cache in turn: */
for(std::vector<Image2D*>::const_iterator iIt=images.begin();iIt!=images.end();++iIt)
{
/* Check if the image is already paged in: */
LRUItem* item=lruMap[*iIt].getDest();
if(item->pagedIn)
{
/* Move the image's LRU list item to the end of the LRU list: */
if(lruTail!=item)
{
/* Unlink the item from its current place in the list: */
if(item->pred!=0)
item->pred->succ=item->succ;
else
lruHead=item->succ;
if(item->succ!=0)
item->succ->pred=item->pred;
/* Link the item to the list's tail: */
item->pred=lruTail;
if(lruTail!=0)
lruTail->succ=item;
else
lruHead=item;
lruTail=item;
item->succ=0;
}
}
else
{
/* Page out images from the head of the LRU list until there is enough space in memory: */
while(usedMemory+item->imageSize>maxMemory)
{
/* Page out the current least-recently-used item: */
LRUItem* out=lruHead;
if(out->pageInCounter==requestCounter)
{
/* We just paged this image in; there is not enough memory in the cache to satisfy the request list: */
Misc::throwStdErr("ImageCacher: Not enough memory to satisfy image request");
}
out->image->pageOut();
out->pagedIn=false;
usedMemory-=out->imageSize;
/* Unlink the item from the LRU list: */
if(out->succ!=0)
out->succ->pred=0;
else
lruTail=0;
lruHead=out->succ;
out->succ=0;
}
/* Page in the requested image: */
item->image->pageIn();
item->pagedIn=true;
item->pageInCounter=requestCounter;
usedMemory+=item->imageSize;
++numPageInRequests;
/* Link the item to the list's tail: */
item->pred=lruTail;
if(lruTail!=0)
lruTail->succ=item;
else
lruHead=item;
lruTail=item;
item->succ=0;
}
}
/* Go to the next request transaction: */
++requestCounter;
}
/*******************************************************
Octree traversal functor class to colorize LiDAR points:
*******************************************************/
class NodeColorSampler
{
/* Elements: */
private:
LidarProcessOctree& lpo; // The processed LiDAR octree
const std::vector<Image2D*>& images; // The vector of images
ImageCacher imageCacher; // The cache manager for images
Color* colorBuffer; // Array to hold colors for a node during processing
Color* childColorBuffers[8]; // Array of color arrays for a node's children during subsampling
LidarFile::Offset colorDataSize; // Size of each record in the color file
LidarFile colorFile; // The file to which to write the color data
size_t numProcessedNodes; // Number of already processed nodes
size_t nextProgressUpdate; // Number of processed nodes at which the progress indicator should be updated
size_t numAssignedColors; // Number of LiDAR points to which colors could be assigned
/* Constructors and destructors: */
public:
NodeColorSampler(LidarProcessOctree& sLpo,const std::vector<Image2D*>& sImages,size_t imageMemorysize,const char* colorFileName); // Creates a color sampler with the given parameters
~NodeColorSampler(void);
/* Methods: */
void operator()(LidarProcessOctree::Node& node,unsigned int nodeLevel);
size_t getNumAssignedColors(void) const // Returns the number of LiDAR points that were assigned colors
{
return numAssignedColors;
}
const ImageCacher& getImageCacher(void) const
{
return imageCacher;
}
};
/*********************************
Methods of class NodeColorSampler:
*********************************/
NodeColorSampler::NodeColorSampler(LidarProcessOctree& sLpo,const std::vector<Image2D*>& sImages,size_t imageMemorySize,const char* colorFileName)
:lpo(sLpo),
images(sImages),
imageCacher(imageMemorySize),
colorBuffer(new Color[lpo.getMaxNumPointsPerNode()]),
colorDataSize(sizeof(Color)),
colorFile(colorFileName,LidarFile::ReadWrite),
numProcessedNodes(0),nextProgressUpdate((lpo.getNumNodes()+199)/200),
numAssignedColors(0)
{
/* Allocate the color subsampling arrays: */
for(int i=0;i<8;++i)
childColorBuffers[i]=new Color[lpo.getMaxNumPointsPerNode()];
/* Write the color file's header: */
colorFile.setEndianness(Misc::LittleEndian);
LidarDataFileHeader dfh((unsigned int)(colorDataSize));
dfh.write(colorFile);
/* Register all images in the image list: */
for(std::vector<Image2D*>::const_iterator iIt=images.begin();iIt!=images.end();++iIt)
imageCacher.registerImage(*iIt);
}
NodeColorSampler::~NodeColorSampler(void)
{
delete[] colorBuffer;
for(int i=0;i<8;++i)
delete[] childColorBuffers[i];
}
namespace {
/**************
Helper classes:
**************/
class NodePointFinder // Class to find a point inside an octree node
{
/* Elements: */
private:
Point queryPoint; // The position of the point to find
const LidarPoint* foundPoint; // The found LiDAR point
/* Constructors and destructors: */
public:
NodePointFinder(const Point& sQueryPoint)
:queryPoint(sQueryPoint),
foundPoint(0)
{
}
/* Methods: */
void operator()(const LidarPoint& lp)
{
if(lp==queryPoint)
foundPoint=&lp;
}
const Point& getQueryPoint(void) const
{
return queryPoint;
}
Scalar getQueryRadius2(void) const
{
return Scalar(0);
}
const LidarPoint* getFoundPoint(void) const
{
return foundPoint;
}
};
}
void NodeColorSampler::operator()(LidarProcessOctree::Node& node,unsigned int nodeLevel)
{
if(node.isLeaf())
{
if(node.getNumPoints()>0)
{
/* Find all images whose bounding boxes overlap this node: */
std::vector<Image2D*> nodeImages;
for(std::vector<Image2D*>::const_iterator iIt=images.begin();iIt!=images.end();++iIt)
{
const Image2D::Box& box=(*iIt)->getWorldBox();
if(box.min[0]-lpo.getOffset()[0]<node.getDomain().getMax()[0]&&box.max[0]-lpo.getOffset()[0]>node.getDomain().getMin()[0]
&&box.min[1]-lpo.getOffset()[1]<node.getDomain().getMax()[1]&&box.max[1]-lpo.getOffset()[1]>node.getDomain().getMin()[1])
nodeImages.push_back(*iIt);
}
/* Page in all found images: */
imageCacher.requestImages(nodeImages);
/* Assign a color to each LiDAR point in this node: */
for(unsigned int i=0;i<node.getNumPoints();++i)
{
/* Copy the point's original color: */
colorBuffer[i]=node[i].value;
/* Lookup the point in all images overlapping this node: */
Geometry::Point<double,3> pos;
for(int j=0;j<3;++j)
pos[j]=double(node[i][j]+lpo.getOffset()[j]);
// Evil hack afoot!
if(pos[2]<0.0)
{
if(pos[2]>=-525.0)
{
colorBuffer[i][0]=Color::Scalar((pos[2]+525.0)*240.0/525.0);
colorBuffer[i][1]=Color::Scalar((pos[2]+525.0)*95.0/525.0+160.0);
colorBuffer[i][2]=Color::Scalar(255);
}
else if(pos[2]>=-1050.0)
{
colorBuffer[i][0]=Color::Scalar(0);
colorBuffer[i][1]=Color::Scalar((pos[2]+1050.0)*160.0/525.0);
colorBuffer[i][2]=Color::Scalar(255);
}
else if(pos[2]>=-1575.0)
{
colorBuffer[i][0]=Color::Scalar(0);
colorBuffer[i][1]=Color::Scalar(0);
colorBuffer[i][2]=Color::Scalar((pos[2]+1575.0)*191.0/525.0+64.0);
}
else
{
colorBuffer[i][0]=Color::Scalar(0);
colorBuffer[i][1]=Color::Scalar(0);
colorBuffer[i][2]=Color::Scalar(64);
}
colorBuffer[i][3]=Color::Scalar(255);
++numAssignedColors;
}
else
for(std::vector<Image2D*>::iterator iIt=nodeImages.begin();iIt!=nodeImages.end();++iIt)
{
Image2D::SampleResult sr=(*iIt)->getColor(Image2D::Point(pos.getComponents()));
if(sr.first)
{
/* Copy the sample result: */
for(int j=0;j<3;++j)
colorBuffer[i][j]=sr.second[j];
colorBuffer[i][3]=Color::Scalar(255);
++numAssignedColors;
/* Bail out: */
break;
}
}
}
}
}
else
{
/* Get pointers to the node's children and load their color arrays: */
colorFile.flush();
for(int childIndex=0;childIndex<8;++childIndex)
{
LidarProcessOctree::Node* child=lpo.getChild(&node,childIndex);
if(child->getNumPoints()>0)
{
colorFile.setReadPosAbs(LidarDataFileHeader::getFileSize()+colorDataSize*child->getDataOffset());
colorFile.read(childColorBuffers[childIndex],child->getNumPoints());
}
}
/* Find the direct ancestors of all LiDAR points in this node and copy their color values from the child arrays: */
for(unsigned int i=0;i<node.getNumPoints();++i)
{
/* Find the child node containing this point's ancestor: */
int pointChildIndex=node.getDomain().findChild(node[i]);
LidarProcessOctree::Node* pointChild=lpo.getChild(&node,pointChildIndex);
/* Find the point's ancestor: */
NodePointFinder npf(node[i]);
lpo.processNodePointsDirected(pointChild,npf);
if(npf.getFoundPoint()==0)
{
/* This is an internal corruption in the octree file. Print a helpful and non-offensive error message: */
Misc::throwStdErr("Fatal error: Octree file corrupted around position (%f, %f, %f)",node[i][0],node[i][1],node[i][2]);
}
/* Retrieve the ancestor's color: */
colorBuffer[i]=childColorBuffers[pointChildIndex][npf.getFoundPoint()-pointChild->getPoints()];
}
}
/* Write the node's colors to the color file: */
colorFile.setWritePosAbs(LidarDataFileHeader::getFileSize()+colorDataSize*node.getDataOffset());
colorFile.write(colorBuffer,node.getNumPoints());
/* Update the progress counter: */
++numProcessedNodes;
if(numProcessedNodes>=nextProgressUpdate)
{
int percent=int((numProcessedNodes*100+lpo.getNumNodes()/2)/lpo.getNumNodes());
std::cout<<"\rAssigning colors... "<<std::setw(3)<<percent<<"%"<<std::flush;
nextProgressUpdate=((percent+1)*lpo.getNumNodes()-lpo.getNumNodes()/2+99)/100;
}
}
int main(int argc,char* argv[])
{
const char* lidarFileName=0;
size_t octreeCacheSize=512;
size_t imageCacheSize=512;
const char* colorFileName=0;
std::vector<Image2D*> images;
for(int i=1;i<argc;++i)
{
if(argv[i][0]=='-')
{
if(strcasecmp(argv[i]+1,"octreeCache")==0)
{
++i;
octreeCacheSize=size_t(atoi(argv[i]));
}
else if(strcasecmp(argv[i]+1,"imageCache")==0)
{
++i;
imageCacheSize=size_t(atoi(argv[i]));
}
}
else if(lidarFileName==0)
lidarFileName=argv[i];
else if(colorFileName==0)
colorFileName=argv[i];
else
{
/* Load an image: */
Image2D* newImage=new Image2D(argv[i]);
images.push_back(newImage);
}
}
if(lidarFileName==0)
{
std::cerr<<"No LiDAR file name provided"<<std::endl;
return 1;
}
if(colorFileName==0)
colorFileName="Colors";
if(images.empty())
{
std::cerr<<"No images provided"<<std::endl;
return 1;
}
/* Create a processing octree: */
LidarProcessOctree lpo(lidarFileName,octreeCacheSize*size_t(1024*1024));
std::cout<<"LiDAR coordinate offset: "<<lpo.getOffset()[0]<<", "<<lpo.getOffset()[1]<<", "<<lpo.getOffset()[2]<<std::endl;
/* Assign colors to all points in the octree: */
std::string lidarColorFileName=lidarFileName;
lidarColorFileName.push_back('/');
lidarColorFileName.append(colorFileName);
NodeColorSampler nodeColorSampler(lpo,images,imageCacheSize*size_t(1024*1024),lidarColorFileName.c_str());
std::cout<<"Assigning colors... 0%"<<std::flush;
lpo.processNodesPostfix(nodeColorSampler);
std::cout<<std::endl;
std::cout<<nodeColorSampler.getNumAssignedColors()<<" LiDAR points re-colored"<<std::endl;
std::cout<<nodeColorSampler.getImageCacher().getNumPageInRequests()<<" images paged into main memory during processing"<<std::endl;
/* Delete all images: */
for(std::vector<Image2D*>::iterator iIt=images.begin();iIt!=images.end();++iIt)
delete *iIt;
return 0;
}