forked from GrimlockFPV/ChibiCopter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.c
581 lines (473 loc) · 18.2 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
/*
ChibiOS - Copyright (C) 2006..2018 Giovanni Di Sirio
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include <math.h>
#include <string.h>
#include "ch.h"
#include "hal.h"
#include "config.h"
#include "chprintf.h"
#include "drivers/mpu9250.h"
#include "drivers/kalman.h"
#include "drivers/GNSS.h"
#include "lcd.h"
void InitHardware(void);
void Kalman_config(void);
void Kalman_update(void);
static binary_semaphore_t MPUDataReady; /* Semaphore fro the MPU thread */
extern int16_t GyroData[3];
extern float AccelData[3];
uint16_t mpuCycles = 0;
icucnt_t PulseWidth, PulsePeriod;
uint32_t channel[RC_CHANNEL_NUM];
uint8_t channel_select_counter;
Kalman kalmanX; // Create the Kalman instances
Kalman kalmanY;
GNSS_StateHandle GNSS_Handle;
RTCDateTime timespec;
float timer;
float gyroXangle, gyroYangle; // Angle calculate using the gyro only
float compAngleX, compAngleY; // Calculated angle using a complementary filter
float kalAngleX, kalAngleY; // Calculated angle using a Kalman filter
/*
* This is a periodic thread that does absolutely nothing except flashing a LED.
*/
static THD_WORKING_AREA(waThread1, 128);
static THD_FUNCTION(Thread1, arg) {
(void)arg;
chRegSetThreadName("Blinky");
while (true) {
palSetLine(LINE_LED_GREEN);
chThdSleepMilliseconds(200);
palClearLine(LINE_LED_GREEN);
chThdSleepMilliseconds(200);
}
}
/* MPU ISR:
* Makes sure we are reading new data
* MPU-INT is set to active high any read to clear
*/
static void mpu_isr_cb(void *arg) {
(void)arg;
chSysLockFromISR();
/* Invocation of some I-Class system APIs, never preemptable.*/
chBSemSignalI(&MPUDataReady);
if (mpuCycles % 1000 == 0) {
palToggleLine(LINE_LED_BLUE);
mpuCycles = 0;
}
mpuCycles++;
chSysUnlockFromISR();
}
/*
* MPUThread:
* Main thread that runs the control loop
* Waits for new MPU Values, gets the current RC Command
* calls PID, Mixer an sets the values to the motors/ESCs
*/
static THD_WORKING_AREA(waThread2, 1024);
static THD_FUNCTION(Thread2, arg) {
(void)arg;
chRegSetThreadName("MPU_Thread");
chBSemObjectInit(&MPUDataReady, TRUE); /* Semaphore initialization*/
StartCalibration(); /* Gyro calibration */
if (MPUInit() != 0) { /* Gyro initialization */
while (TRUE) {
// Init failed so we stay here blinking red
palSetLine(LINE_LED_RED);
chThdSleepMilliseconds(200);
palClearLine(LINE_LED_RED);
chThdSleepMilliseconds(200);
}
}
/* Enabling events on rising edge of the interrupt line.*/
palSetLineCallback(LINE_MPU_INT, mpu_isr_cb, NULL);
palEnableLineEvent(LINE_MPU_INT, PAL_EVENT_MODE_RISING_EDGE);
while (TRUE) {
do {
chBSemWait(&MPUDataReady); // Wait until new Gyro Data is available
} while (GetMPUData() == FALSE); // Read the data
if (mpuCycles % 500 == 0) {
palToggleLine(LINE_LED_BLUE);
}
if (mpuCycles > 1000) mpuCycles = 0;
mpuCycles++;
}
}
/*
* "Period" callback and icuGetPeriod() f'n
* is really measuring the active high pulse width
* (what we need to decode PPM receiver signals)
*/
static void icu_period_cb(ICUDriver *icup) {
PulseWidth = icuGetPeriodX(icup);
if (PulseWidth > 3000) channel_select_counter = 0;
else channel_select_counter++;
if (channel_select_counter == 1)channel[CH_1] = PulseWidth;
if (channel_select_counter == 2)channel[CH_2] = PulseWidth;
if (channel_select_counter == 3)channel[CH_3] = PulseWidth;
if (channel_select_counter == 4)channel[CH_4] = PulseWidth;
if (channel_select_counter == 5)channel[CH_5] = PulseWidth;
if (channel_select_counter == 6)channel[CH_6] = PulseWidth;
}
/* Dont expect to ever hit the overflow
* but just in case .....
*/
static void icu_overflow_cb(ICUDriver *icup) {
(void)icup;
channel_select_counter = 0;
for (int i = 0; i < 10; i++) {
chprintf(CHP, "Rollover...rollover...let Benji come over!!!");
chThdSleepMilliseconds(100);
}
}
static ICUConfig icucfg = {
ICU_INPUT_ACTIVE_HIGH,
1000000, /* 1MHz ICU clock frequency = 1us per counter tick */
NULL, /* pulse_width_cb ... strangely not used */
icu_period_cb,
icu_overflow_cb,
ICU_CHANNEL_1,
0U, /* DMA settings in DIER register ... not used */
0xFFFFU /* Max ARR (overflow) value possible on 16 bit timer */
};
static void pwmpcb(PWMDriver *pwmp) {
(void)pwmp;
//palClearPad(GPIOD, GPIOD_LED5);
}
static void pwmc1cb(PWMDriver *pwmp) {
(void)pwmp;
//palSetPad(GPIOD, GPIOD_LED5);
}
static PWMConfig pwmcfg = {
10000, /* 10kHz PWM clock frequency. */
10000, /* Initial PWM period 1S. */
pwmpcb,
{
{PWM_OUTPUT_ACTIVE_HIGH, pwmc1cb},
{PWM_OUTPUT_DISABLED, NULL},
{PWM_OUTPUT_DISABLED, NULL},
{PWM_OUTPUT_DISABLED, NULL}
},
0,
0,
0
};
/*
* ICU_PWM Thread:
* Input capture of receiver signals and
* PWM generation of ESC driver signals
*/
static THD_WORKING_AREA(waThread3, 1024);
static THD_FUNCTION(Thread3, arg) {
(void)arg;
chRegSetThreadName("PWM-ICU_Thread");
icuObjectInit(&ICUD4);
icuStart(&ICUD4, &icucfg);
icuStartCapture(&ICUD4);
icuEnableNotifications(&ICUD4);
pwmStart(&PWMD3, &pwmcfg);
pwmEnablePeriodicNotification(&PWMD3);
/*
* Starts the PWM channel 0 using 75% duty cycle.
*/
//pwmEnableChannel(&PWMD1, 0, PWM_PERCENTAGE_TO_WIDTH(&PWMD1, 7500));
while (TRUE) {
chThdSleepMilliseconds(500);
palToggleLine(LINE_LED_RED);
}
}
/*
* EKF Thread:
*/
static THD_WORKING_AREA(waThread5, 1024);
static THD_FUNCTION(Thread5, arg) {
(void)arg;
chRegSetThreadName("EKF_Thread");
chBSemObjectInit(&MPUDataReady, TRUE); /* Semaphore initialization*/
StartCalibration(); /* Gyro calibration */
if (MPUInit() != 0) { /* Gyro initialization */
while (TRUE) {
// Init failed so we stay here blinking red
palSetLine(LINE_LED_RED);
chThdSleepMilliseconds(200);
palClearLine(LINE_LED_RED);
chThdSleepMilliseconds(200);
}
}
/* Enabling events on rising edge of the interrupt line.*/
palSetLineCallback(LINE_MPU_INT, mpu_isr_cb, NULL);
palEnableLineEvent(LINE_MPU_INT, PAL_EVENT_MODE_RISING_EDGE);
Kalman_init(&kalmanX);
Kalman_init(&kalmanY);
Kalman_config();
while (TRUE) {
chThdSleepMilliseconds(2);
Kalman_update();
}
}
void txend1(UARTDriver *uartp);
void txend2(UARTDriver *uartp);
void rxend(UARTDriver *uartp);
void rxchar(UARTDriver *uartp, uint16_t c);
void rxerr(UARTDriver *uartp, uartflags_t e);
/*
* UART driver configuration structure.
*/
UARTConfig uart_cfg_1 = {
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
9600,
0,
USART_CR2_LINEN,
0
};
/*
* GNSS Thread:
* UART communication to U-Blox
*/
static THD_WORKING_AREA(waThread6, 1024);
static THD_FUNCTION(Thread6, arg) {
RTCDateTime time;
uint32_t dt;
(void)arg;
chRegSetThreadName("GNSS_Thread");
GNSS_Init(&GNSS_Handle);
chThdSleepMilliseconds(1000);
GNSS_LoadConfig(&GNSS_Handle);
rtcGetTime(&RTCD1, &time);
uint32_t Timer = time.millisecond;
chThdSleepMilliseconds(1000);
while (TRUE) {
rtcGetTime(&RTCD1, &time);
chprintf(CHP, "top of loop time = %d\r\n", time.millisecond);
if ((time.millisecond - Timer) > 1000) {
GNSS_GetUniqID(&GNSS_Handle);
GNSS_ParseBuffer(&GNSS_Handle);
chThdSleepMilliseconds(250);
GNSS_GetPVTData(&GNSS_Handle);
GNSS_ParseBuffer(&GNSS_Handle);
chprintf(CHP, "Day: %d-%d-%d \r\n", GNSS_Handle.day, GNSS_Handle.month,GNSS_Handle.year);
chprintf(CHP, "Time: %d:%d:%d \r\n", GNSS_Handle.hour, GNSS_Handle.min,GNSS_Handle.sec);
chprintf(CHP, "Status of fix: %d \r\n", GNSS_Handle.fixType);
chprintf(CHP, "Latitude: %f \r\n", GNSS_Handle.fLat);
chprintf(CHP, "Longitude: %f \r\n",(float) GNSS_Handle.lon / 10000000.0);
chprintf(CHP, "Height above ellipsoid: %d \r\n", GNSS_Handle.height);
chprintf(CHP, "Height above mean sea level: %d \r\n", GNSS_Handle.hMSL);
chprintf(CHP, "Ground Speed (2-D): %d \r\n", GNSS_Handle.gSpeed);
chprintf(CHP, "Unique ID: %04X %04X %04X %04X %04X \n\r",
GNSS_Handle.uniqueID[0], GNSS_Handle.uniqueID[1],
GNSS_Handle.uniqueID[2], GNSS_Handle.uniqueID[3],
GNSS_Handle.uniqueID[4], GNSS_Handle.uniqueID[5]);
rtcGetTime(&RTCD1, &time);
dt = time.millisecond - Timer;
chprintf(CHP, "delta t = %d\r\n", dt);
Timer = time.millisecond;
}
chThdSleepMilliseconds(250);
}
}
/* Stats/Log Thread:
* Debug / JLink output
*/
static THD_WORKING_AREA(waThread4, 1024);
static THD_FUNCTION(Thread4, arg) {
(void)arg;
chRegSetThreadName("Statistics");
uint8_t start = 0;
while (TRUE) {
chprintf(CHP, "Roll: %.3d Pitch: %.3d Yaw: %.3d\tAccX: %.3f AccY: %.3f AccZ: %.3f\r\n",
GyroData[ROLL], GyroData[PITCH], GyroData[YAW], AccelData[ROLL], AccelData[PITCH], AccelData[YAW]);
chThdSleepMilliseconds(250);
/*
//For starting the motors: throttle low and yaw left (step 1).
if (channel[CH_3] < 1100 && channel[CH_4] < 1100) start = 1;
//When yaw stick is back in the center position start the motors (step 2).
if (start == 1 && channel[CH_3] < 1100 && channel[CH_4] > 1450) start = 2;
//Stopping the motors: throttle low and yaw right.
if (start == 2 && channel[CH_3] < 1100 && channel[CH_4] > 1900) start = 0;
chprintf(CHP, "Start:%d", start);
chprintf(CHP, " Roll:");
if ((int32_t)channel[CH_1] - 1480 < 0) chprintf(CHP, "<<<");
else if (channel[CH_1] - 1520 > 0) chprintf(CHP, ">>>");
else chprintf(CHP, "-+-");
chprintf(CHP, "%.4d", channel[CH_1]);
chprintf(CHP, " Pitch:");
if ((int32_t)channel[CH_2] - 1480 < 0) chprintf(CHP, "^^^");
else if (channel[CH_2] - 1520 > 0) chprintf(CHP, "vvv");
else chprintf(CHP, "-+-");
chprintf(CHP, "%.4d", channel[CH_2]);
chprintf(CHP, " Throttle:");
if ((int32_t)channel[CH_3] - 1480 < 0) chprintf(CHP, "vvv");
else if (channel[CH_3] - 1520 > 0) chprintf(CHP, "^^^");
else chprintf(CHP, "-+-");
chprintf(CHP, "%.4d", channel[CH_3]);
chprintf(CHP, " Yaw:");
if ((int32_t)channel[CH_4] - 1480 < 0) chprintf(CHP, "<<<");
else if (channel[CH_4] - 1520 > 0) chprintf(CHP, ">>>");
else chprintf(CHP, "-+-");
chprintf(CHP, "%.4d", channel[CH_4]);
chprintf(CHP, " CH5:");
chprintf(CHP, "%.4d", channel[CH_5]);
chprintf(CHP, " CH6:");
chprintf(CHP, "%.4d\r\n", channel[CH_6]);
*/
}
}
/*
* Application entry point.
*/
int main(void) {
static char string[40];
RTCDateTime time;
//uint32_t dt;
halInit();
chSysInit();
InitHardware();
rtcGetTime(&RTCD1, &time);
uint32_t Timer = time.millisecond;
chThdSleepMilliseconds(2000);
// Creates the blinker thread: Lowest prio
chThdCreateStatic(waThread1, sizeof(waThread1), LOWPRIO, Thread1, NULL);
// Start MPU Thread: Middle prio
//chThdCreateStatic(waThread2, sizeof(waThread2), NORMALPRIO+1, Thread2, NULL);
// Start PWM_ICU Thread: Highest prio
//chThdCreateStatic(waThread3, sizeof(waThread3), NORMALPRIO+2, Thread3, NULL);
// Start Stats Thread: Low prio
//chThdCreateStatic(waThread4, sizeof(waThread4), NORMALPRIO, Thread4, NULL);
// Start EKF Thread: mid prio
//chThdCreateStatic(waThread5, sizeof(waThread5), NORMALPRIO, Thread5, NULL);
// Start GNSS Thread: mid prio
//chThdCreateStatic(waThread6, sizeof(waThread6), NORMALPRIO, Thread6, NULL);
// Normal main() thread activity, it does nothing.
/*while (TRUE)
chThdSleep(TIME_INFINITE);
return 0;
*/
/* Writing some default strings. */
lcdWriteString(&LCDD1, "ChibiCopter by Wayne Brenckle", 0);
rtcGetTime(&RTCD1, &time);
chsnprintf(string, sizeof(string), "Delta time is %d", time.millisecond - Timer);
lcdWriteString(&LCDD1, string, 40);
chThdSleepMilliseconds(2000);
/* Performing shift continuously. */
while (true) {
unsigned ii;
for(ii = 0; ii < 16; ii++){
lcdDoDisplayShift(&LCDD1, LCD_LEFT);
chThdSleepMilliseconds(50);
}
chThdSleepMilliseconds(2000);
for(ii = 0; ii < 16; ii++){
lcdDoDisplayShift(&LCDD1, LCD_RIGHT);
chThdSleepMilliseconds(50);
}
chThdSleepMilliseconds(2000);
}
}
void InitHardware() {
/* SPI1, TIM4, TIM3 pins setup. */
palSetPadMode(GPIOA, 2, PAL_MODE_ALTERNATE(7)); /* UART2 TX/GPS */
palSetPadMode(GPIOA, 3, PAL_MODE_ALTERNATE(7)); /* UART2 RX/GPS */
palSetPadMode(GPIOA, 4, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST); /* SPI1/MPU CS */
palSetPadMode(GPIOB, 3, PAL_MODE_ALTERNATE(5) | PAL_STM32_OSPEED_HIGHEST); /* SPI1 SCK. */
palSetPadMode(GPIOB, 4, PAL_MODE_ALTERNATE(5) | PAL_STM32_OSPEED_HIGHEST); /* SPI1 MISO. */
palSetPadMode(GPIOB, 5, PAL_MODE_ALTERNATE(5) | PAL_STM32_OSPEED_HIGHEST); /* SPI1 MOSI. */
palSetPadMode(GPIOB, 6, PAL_MODE_ALTERNATE(2)); /* TIM4 CH1 ICU */
palSetPadMode(GPIOC, 6, PAL_MODE_ALTERNATE(2)); /* TIM3 CH1 PWM */
palSetPadMode(GPIOC, 7, PAL_MODE_ALTERNATE(2)); /* TIM3 CH2 PWM */
palSetPadMode(GPIOC, 8, PAL_MODE_ALTERNATE(2)); /* TIM3 CH3 PWM */
palSetPadMode(GPIOC, LINE_MPU_INT, PAL_MODE_INPUT); /* MPU INTERUPT */
/* Configuring RS and E PIN as Output Push Pull. */
palSetLineMode(LINE_RS, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
palSetLineMode(LINE_E, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
palSetPad(GPIOA, 4);
palClearLine(LINE_LED_RED);
palClearLine(LINE_LED_GREEN);
palClearLine(LINE_LED_BLUE);
sdStart(&LPSD1, NULL); // Activates the serial driver (LPUART1) using the driver default configuration.
uartStart(&UARTD2, &uart_cfg_1); // start the serial UART driver to talk to the UBLOX GNSS unit
/* Initializing LDC driver. */
lcdInit();
lcdStart(&LCDD1, &lcdcfg);
}
void Kalman_config(void) {
do {
chBSemWait(&MPUDataReady); // Wait until new Gyro Data is available
} while (GetMPUData() == FALSE); // Read the data
// Source: http://www.freescale.com/files/sensors/doc/app_note/AN3461.pdf eq. 25 and eq. 26
// atan2 outputs the value of -π to π (radians) - see http://en.wikipedia.org/wiki/Atan2
// It is then converted from radians to degrees
float roll = atan2(AccelData[PITCH], AccelData[YAW]) * RAD_TO_DEG;
float pitch = atan(-AccelData[ROLL] / sqrt(AccelData[PITCH] * AccelData[PITCH] + AccelData[YAW] * AccelData[YAW])) * RAD_TO_DEG;
kalmanX.angle = roll; // Set starting angle
kalmanY.angle = pitch;
gyroXangle = roll;
gyroYangle = pitch;
compAngleX = roll;
compAngleY = pitch;
rtcGetTime(&RTCD1, ×pec);
timer = timespec.millisecond;
}
void Kalman_update(void) {
/* Update all the values */
chBSemWait(&MPUDataReady);
GetMPUData();
rtcGetTime(&RTCD1, ×pec);
float dt = (timespec.millisecond - timer) / 1000;
timer = timespec.millisecond;
chprintf(CHP, "dt = %f", dt);
// Source: http://www.freescale.com/files/sensors/doc/app_note/AN3461.pdf eq. 25 and eq. 26
// atan2 outputs the value of -π to π (radians) - see http://en.wikipedia.org/wiki/Atan2
// It is then converted from radians to degrees
uint16_t roll = atan2(AccelData[PITCH], AccelData[YAW]) * RAD_TO_DEG;
uint16_t pitch = atan(-AccelData[ROLL] / sqrt(AccelData[PITCH] * AccelData[PITCH] + AccelData[YAW] * AccelData[YAW])) * RAD_TO_DEG;
// This fixes the transition problem when the accelerometer angle jumps between -180 and 180 degrees
if ((roll < -90 && kalAngleX > 90) || (roll > 90 && kalAngleX < -90)) {
kalmanX.angle = roll;
compAngleX = roll;
kalAngleX = roll;
gyroXangle = roll;
} else
kalAngleX = Kalman_getAngle(&kalmanX, roll, GyroData[ROLL], dt); // Calculate the angle using a Kalman filter
if (abs(kalAngleX) > 90)
GyroData[PITCH] = -GyroData[PITCH]; // Invert rate, so it fits the restriced accelerometer reading
kalAngleY = Kalman_getAngle(&kalmanY, pitch, GyroData[PITCH], dt);
gyroXangle += GyroData[ROLL] * dt; // Calculate gyro angle without any filter
gyroYangle += GyroData[PITCH] * dt;
compAngleX = 0.93 * (compAngleX + GyroData[ROLL] * dt) + 0.07 * roll; // Calculate the angle using a Complimentary filter
compAngleY = 0.93 * (compAngleY + GyroData[PITCH] * dt) + 0.07 * pitch;
// Reset the gyro angle when it has drifted too much
if (gyroXangle < -180 || gyroXangle > 180)
gyroXangle = kalAngleX;
if (gyroYangle < -180 || gyroYangle > 180)
gyroYangle = kalAngleY;
/* Print Data */
chprintf(CHP, "AccX: %d\t", AccelData[ROLL]);
chprintf(CHP, "AccY: %d\t", AccelData[PITCH]);
chprintf(CHP, "AccZ: %d\t\t", AccelData[YAW]);
chprintf(CHP, "GyroX: %d\t", GyroData[ROLL]);
chprintf(CHP, "GyroY: %d\t", GyroData[PITCH]);
chprintf(CHP, "GyroZ: %d\r\n", GyroData[YAW]);
chprintf(CHP, "K Roll: %f\t", roll);
chprintf(CHP, "gyrXdeg: %f\t", gyroXangle);
chprintf(CHP, "cmpXdeg: %f\t", compAngleX);
chprintf(CHP, "kalXdeg: %f\r\n", kalAngleX);
chprintf(CHP, "K Pitch: %f\t", pitch);
chprintf(CHP, "gyrYdeg: %f\t", gyroYangle);
chprintf(CHP, "cmpYdeg: %f\t", compAngleY);
chprintf(CHP, "kalYdeg: %f\r\n", kalAngleY);
}