From c99a2d320795a14e0a37e582bda41b3b90185684 Mon Sep 17 00:00:00 2001 From: Phillip Alday Date: Wed, 9 Aug 2023 14:30:10 +0000 Subject: [PATCH] More informative error messages (#698) * informative error message when passed type instead of instance * more informative error for R2 * NEWS * JuliaFormatter --- NEWS.md | 3 +++ src/generalizedlinearmixedmodel.jl | 20 +++++++++++++++ src/mixedmodel.jl | 40 ++++++++++++++++++++++++++++++ test/pirls.jl | 14 +++++++++++ test/pls.jl | 15 +++++++++++ 5 files changed, 92 insertions(+) diff --git a/NEWS.md b/NEWS.md index 7980035c7..67cbb1e66 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,4 +1,6 @@ * New kwarg `amalgamate` can be used to disable amalgation of random0effects terms sharing a single grouping variable. Generally, `amalgamate=false` will result in a slower fit, but may improve convergence in some pathological cases. Note that this feature is experimental and changes to it are **not** considered breakin. [#673] +* More informative error messages when passing a `Distribution` or `Link` type instead of the desired instance. [#698] +* More informative error message on the intentional decision not to define methods for the coefficient of determination. [#698] MixedModels v4.16.0 Release Notes ============================== @@ -449,4 +451,5 @@ Package dependencies [#681]: https://github.com/JuliaStats/MixedModels.jl/issues/681 [#682]: https://github.com/JuliaStats/MixedModels.jl/issues/682 [#694]: https://github.com/JuliaStats/MixedModels.jl/issues/694 +[#698]: https://github.com/JuliaStats/MixedModels.jl/issues/698 [#703]: https://github.com/JuliaStats/MixedModels.jl/issues/703 diff --git a/src/generalizedlinearmixedmodel.jl b/src/generalizedlinearmixedmodel.jl index 01d0b94ef..dacefefc6 100644 --- a/src/generalizedlinearmixedmodel.jl +++ b/src/generalizedlinearmixedmodel.jl @@ -328,6 +328,26 @@ end StatsAPI.fitted(m::GeneralizedLinearMixedModel) = m.resp.mu +function GeneralizedLinearMixedModel( + f::FormulaTerm, + tbl, + d::Type, + args...; + kwargs..., +) + throw(ArgumentError("Expected a Distribution instance (`$d()`), got a type (`$d`).")) +end + +function GeneralizedLinearMixedModel( + f::FormulaTerm, + tbl, + d::Distribution, + l::Type; + kwargs... +) + throw(ArgumentError("Expected a Link instance (`$l()`), got a type (`$l`).")) +end + function GeneralizedLinearMixedModel( f::FormulaTerm, tbl, diff --git a/src/mixedmodel.jl b/src/mixedmodel.jl index 12054c07a..ff4e6c7c2 100644 --- a/src/mixedmodel.jl +++ b/src/mixedmodel.jl @@ -74,6 +74,28 @@ issingular(m::GeneralizedLinearMixedModel, θ=m.optsum.final) = any(lowerbd(m) . # FIXME: better to base this on m.optsum.returnvalue StatsAPI.isfitted(m::MixedModel) = m.optsum.feval > 0 +function StatsAPI.fit( + ::Type{<:MixedModel}, + f::FormulaTerm, + tbl, + d::Type, + args...; + kwargs... +) + throw(ArgumentError("Expected a Distribution instance (`$d()`), got a type (`$d`).")) +end + +function StatsAPI.fit( + ::Type{<:MixedModel}, + f::FormulaTerm, + tbl, + d::Distribution, + l::Type; + kwargs... +) + throw(ArgumentError("Expected a Link instance (`$l()`), got a type (`$l`).")) +end + StatsAPI.meanresponse(m::MixedModel) = mean(m.y) """ @@ -97,6 +119,24 @@ function retbl(mat, trm) ) end +StatsAPI.adjr2(m::MixedModel) = r2(m) + +function StatsAPI.r2(m::MixedModel) + @error ( + """There is no uniquely defined coefficient of determination for mixed models + that has all the properties of the corresponding value for classical + linear models. The GLMM FAQ provides more detail: + + https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#how-do-i-compute-a-coefficient-of-determination-r2-or-an-analogue-for-glmms + + + Alternatively, MixedModelsExtras provides a naive implementation, but + the warnings there and in the FAQ should be taken seriously! + """ + ) + throw(MethodError(r2, (m,))) +end + """ raneftables(m::MixedModel; uscale = false) diff --git a/test/pirls.jl b/test/pirls.jl index 77a70c4a6..b50f0fa1a 100644 --- a/test/pirls.jl +++ b/test/pirls.jl @@ -18,6 +18,20 @@ include("modelcache.jl") @test MixedModel(f, d, Bernoulli(), ProbitLink()) isa GeneralizedLinearMixedModel end +@testset "Type for instance" begin + vaform = @formula(r2 ~ 1 + anger + gender + btype + situ + (1|subj) + (1|item)) + verbagg = dataset(:verbagg) + @test_throws ArgumentError fit(MixedModel, vaform, verbagg, Bernoulli, LogitLink) + @test_throws ArgumentError fit(MixedModel, vaform, verbagg, Bernoulli(), LogitLink) + @test_throws ArgumentError fit(MixedModel, vaform, verbagg, Bernoulli, LogitLink()) + @test_throws ArgumentError fit(GeneralizedLinearMixedModel, vaform, verbagg, Bernoulli, LogitLink) + @test_throws ArgumentError fit(GeneralizedLinearMixedModel, vaform, verbagg, Bernoulli(), LogitLink) + @test_throws ArgumentError fit(GeneralizedLinearMixedModel, vaform, verbagg, Bernoulli, LogitLink()) + @test_throws ArgumentError GeneralizedLinearMixedModel(vaform, verbagg, Bernoulli, LogitLink) + @test_throws ArgumentError GeneralizedLinearMixedModel(vaform, verbagg, Bernoulli(), LogitLink) + @test_throws ArgumentError GeneralizedLinearMixedModel(vaform, verbagg, Bernoulli, LogitLink()) +end + @testset "contra" begin contra = dataset(:contra) thin = 5 diff --git a/test/pls.jl b/test/pls.jl index 19ec323eb..4902555e3 100644 --- a/test/pls.jl +++ b/test/pls.jl @@ -1,3 +1,4 @@ +using GLM # bring r2 into scope using LinearAlgebra using MixedModels using PooledArrays @@ -688,3 +689,17 @@ end # but this is surprisingly hard to trigger in a reliable way across platforms # just because of the vagaries of floating point. end + +@testset "methods we don't define" begin + m = first(models(:sleepstudy)) + for f in [r2, adjr2] + @test_logs (:error,) begin + try + f(m) + catch + # capture the error, do nothing + end + end + @test_throws MethodError @suppress f(m) + end +end