-
Notifications
You must be signed in to change notification settings - Fork 6
/
segment.py
544 lines (486 loc) · 26.5 KB
/
segment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
import os
import numpy as np
from keras.optimizers import Adam, SGD
from keras.callbacks import ModelCheckpoint,TensorBoard
from keras import backend as K
from keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt
import pickle as pkl
import ISIC_dataset as ISIC
from metrics import dice_loss, jacc_loss, jacc_coef, dice_jacc_mean,dice_coef,dice_jacc_single,sensitivity,specificity
import models
import glob
from sklearn.model_selection import train_test_split
import cv2
np.random.seed(3)
K.set_image_dim_ordering("tf") # Theano dimension ordering: (channels, width, height)
# some changes will be necessary to run with tensorflow
# For multi_gpu use uncommemt and set visible devices
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"] = ""
# Abstract: https://arxiv.org/abs/1703.04819
# Extract challenge Training / Validation / Test images as below
# Download from https://challenge.kitware.com/#challenge/583f126bcad3a51cc66c8d9a
training_folder = "../datasets/training/image"
training_mask_folder = "../datasets/ISIC-2018_Training_Part1_GroundTruth"
training_labels_csv = "../datasets/ISIC-2018_Training_Part3_GroundTruth.csv"
training_split_yml = "../datasets/isic.yml"
validation_folder = "../2017test"
test_folder = "../2017test"
# Place ISIC full dataset as below (optional)
isicfull_folder = "datasets/ISIC_Archive/image"
isicfull_mask_folder = "datasets/ISIC_Archive/mask"
isicfull_train_split="datasets/ISIC_Archive/train.txt"
isicfull_val_split="datasets/ISIC_Archive/val.txt"
isicfull_test_split="datasets/ISIC_Archive/test.txt"
# Folder to store predicted masks
validation_predicted_folder = "results/ISIC_2017_Predicted"
test_predicted_folder = "results/ISIC-2018_Test_v2_Predicted"
def img_sensitivity(y_true, y_pred):
y_true = y_true.reshape(-1).astype(np.bool)
y_pred = y_pred.reshape(-1).astype(np.bool)
true_positives = np.sum(np.round(np.clip(y_true * y_pred, 0, 1)))
possible_positives = np.sum(np.round(np.clip(y_true, 0, 1)))
return true_positives / (possible_positives + np.finfo(float).eps)
def img_specificity(y_true, y_pred):
y_true = y_true.reshape(-1).astype(np.bool)
y_pred = y_pred.reshape(-1).astype(np.bool)
true_negatives = np.sum(np.round(np.clip((1-y_true) * (1-y_pred), 0, 1)))
possible_negatives = np.sum(np.round(np.clip(1-y_true, 0, 1)))
return true_negatives / (possible_negatives + np.finfo(float).eps)
def img_accuracy(y_true, y_pred):
y_true = y_true.reshape(-1).astype(np.bool)
y_pred = y_pred.reshape(-1).astype(np.bool)
true_negatives = np.sum(np.round(np.clip((1-y_true) * (1-y_pred), 0, 1)))
true_positives = np.sum(np.round(np.clip(y_true * y_pred, 0, 1)))
denom = y_true.shape[0]
return (true_negatives+true_positives) / (denom + np.finfo(float).eps)
def post_process(input_mask):
kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(5,5))
opening = cv2.morphologyEx(input_mask, cv2.MORPH_OPEN, kernel)
closing = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, kernel)
ret,thresh = cv2.threshold(closing,127,255,0)
im2,contours,_ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnt_max_area = 0
max_index = 0
for i in range(len(contours)):
cnt = contours[i]
area = cv2.contourArea(cnt)
if area>cnt_max_area:
cnt_max_area = area
max_index = i
img = np.zeros(input_mask.shape,dtype=np.uint8)
if len(contours)>=1:
output_mask = cv2.drawContours(img, [contours[max_index]], 0,(255,255,255), -1)
else:
output_mask = img
return output_mask
seed = 1
height, width = 128, 128
nb_epoch = 200
model_name = "final_2018_3"
do_train = True # train network and save as model_name
do_predict = False # use model to predict and save generated masks for Validation/Test
do_ensemble = False # use previously saved predicted masks from multiple models to generate final masks
ensemble_pkl_filenames = ["model1", "model3","model5"]
model = 'unet'
batch_size = 4
loss_param = 'dice'
optimizer_param = 'adam'
monitor_metric = 'val_jacc_coef'
fc_size = 4096
mean_type = 'imagenet' # 'sample' 'samplewise'
rescale_mask = True
dataset='isic_notest' # 'isic' 'isicfull' 'isic_noval_notest' 'isic_other_split' 'isic_notest'
initial_epoch = 0
use_hsv = False
use_histeq=False
use_rgb_histeq=False
use_only_histeq=False
use_color_en = False
use_naik = False
use_hct = True
use_only_texture = False
metrics = [jacc_coef,'accuracy',sensitivity,specificity,dice_coef]
if use_hsv:
n_channels = 6
print ("Using HSV")
elif use_histeq:
n_channels = 4
print ('Using gray hist. eq.')
elif use_rgb_histeq:
n_channels = 4
print ('Using BGR hist. eq.')
elif use_only_histeq:
print ('Using only hist. eq. single channel')
n_channels = 1
elif use_color_en:
print ('Using color enhanced RGB')
n_channels = 3
elif use_naik:
print('Use Naik')
n_channels = 4
elif use_hct:
print('Using Heq, Naik, Texture')
n_channels = 5
elif use_only_texture:
print('Using only Texture')
n_channels = 1
else:
print ('Using only RGB')
n_channels = 3
print ("Using {} mean".format(mean_type))
remove_mean_imagenet=False
remove_mean_samplewise=False
remove_mean_dataset=False
if mean_type == 'imagenet':
remove_mean_imagenet = True;
elif mean_type == 'sample':
remove_mean_samplewise = True
elif mean_type == 'dataset':
remove_mean_dataset = True
train_mean = np.array([[[ 180.71656799]],[[ 151.13494873]],[[ 139.89967346]]]);
train_std = np.array([[[1]],[[1]],[[ 1]]]); # not using std
else:
raise Exception("Wrong mean type")
loss_options = {'BCE': 'binary_crossentropy', 'dice':dice_loss, 'jacc':jacc_loss, 'mse':'mean_squared_error'}
optimizer_options = {'adam': Adam(lr=1e-4),
'sgd': SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)}
loss = loss_options[loss_param]
optimizer = optimizer_options[optimizer_param]
model_filename = "../saved_models/2018_final/{}.h5".format(model_name)
print(model_filename)
if do_ensemble==False:
print ('Create model' )
if model == 'unet':
# model = models.Unet(height,width, loss=loss, optimizer = optimizer, metrics = metrics, fc_size = fc_size, channels=n_channels)
model = models.get_unet(height,width, loss=loss, optimizer = optimizer, metrics = metrics,channels=n_channels)
elif model == 'unet2':
model = models.Unet2(height,width, loss=loss, optimizer = optimizer, metrics = metrics, fc_size = fc_size, channels=n_channels)
elif model == 'vgg':
model = models.VGG16(height,width, pretrained=False, freeze_pretrained = False, loss = loss, optimizer = optimizer, metrics = metrics,channels=n_channels)
else:
print ("Incorrect model name")
def myGenerator(train_generator, train_mask_generator,
remove_mean_imagenet=True, rescale_mask=True, use_hsv=False):
while True:
train_gen = next(train_generator)
train_mask = next(train_mask_generator)
if False: # use True to show images
mask_true_show = np.where(train_mask>=0.5, 1, 0)
mask_true_show = mask_true_show * 255
mask_true_show = mask_true_show.astype(np.uint8)
for i in range(train_gen.shape[0]):
mask = train_mask[i].reshape((width,height))
img=train_gen[i]
img = img[0:3]
img = img.astype(np.uint8)
# img = img.transpose(1,2,0)
f, ax = plt.subplots(1, 2)
ax[0].imshow(img); ax[0].axis("off");
ax[1].imshow(mask, cmap='Greys_r'); ax[1].axis("off"); plt.show()
yield (train_gen, train_mask)
if do_train:
if dataset == 'isicfull':
n_samples = 2000 # per epoch
print ("Using ISIC full dataset")
train_list, val_list, test_list = ISIC.train_val_test_from_txt(isicfull_train_split, isicfull_val_split, isicfull_test_split)
# folders for resized images
base_folder = "datasets/training_{}_{}".format(height,width)
image_folder = os.path.join(base_folder,"image")
mask_folder = os.path.join(base_folder,"mask")
if not os.path.exists(base_folder):
print ("Begin resizing...")
ISIC.resize_images(train_list+val_list+test_list, input_image_folder=isicfull_folder,
input_mask_folder=isicfull_mask_folder,
output_image_folder=image_folder.format(height,width), output_mask_folder=mask_folder,
height=height, width=width)
print ("Done resizing...")
else:
print ("Using ISIC 2018 dataset")
# folders for resized images
base_folder = "../datasets/2018training_{}_{}".format(height, width)
image_folder = os.path.join(base_folder,"image")
mask_folder = os.path.join(base_folder,"mask")
rasterList = glob.glob(os.path.join(image_folder, '*.jpg'))
# print(rasterList)
# trainval_samples, test_samples = train_test_split(rasterList, test_size=0.1)
train_list, test_list = train_test_split(rasterList, test_size=0.2)
train_list,val_list = train_test_split(train_list,test_size=0.1)
# train_list, train_label, test_list, test_label = ISIC.train_test_from_yaml(yaml_file = training_split_yml, csv_file = training_labels_csv)
# train_list, val_list, train_label, val_label = ISIC.train_val_split(train_list, train_label, seed = seed, val_split = 0.20)
if not os.path.exists(base_folder):
ISIC.resize_images(train_list+val_list+test_list,
input_image_folder=training_folder, input_mask_folder=training_mask_folder,
output_image_folder=image_folder, output_mask_folder=mask_folder,
height=height, width=width)
if dataset == "isic_notest": # previous validation split will be used for training
train_list = train_list + val_list
val_list = test_list
elif dataset=="isic_noval_notest": # previous validation/test splits will be used for training
monitor_metric = 'jacc_coef'
train_list = train_list + val_list + test_list
val_list = test_list
elif dataset=="isic_other_split": # different split, uses previous val/test for training
seed = 82
train_list1, train_list2, train_label1, train_label2 = ISIC.train_val_split(train_list, train_label, seed=seed, val_split=0.30)
train_list = val_list+test_list+train_list1
val_list = train_list2
test_list = val_list
elif dataset=="isic_test_check":
train_list = train_list + val_list + test_list
test_image_folder = '../2017test_128_128/image/'
test_mask_folder = '../2017test_128_128/mask/'
test_list = glob.glob(os.path.join(test_image_folder, '*.png'))
val_list = test_list
n_samples = len(train_list)
print ("Loading images")
train, train_mask = ISIC.load_images(train_list, height, width,
image_folder, mask_folder,
remove_mean_imagenet=remove_mean_imagenet,
rescale_mask=rescale_mask, use_hsv=use_hsv, remove_mean_samplewise=remove_mean_samplewise,use_histeq=use_histeq,use_rgb_histeq=use_rgb_histeq,use_only_histeq=use_only_histeq,use_color_en=use_color_en,use_naik=use_naik,use_hct=use_hct,use_only_texture = use_only_texture)
if dataset!="isic_test_check":
val, val_mask = ISIC.load_images(val_list, height, width,
image_folder, mask_folder,
remove_mean_imagenet=remove_mean_imagenet,
rescale_mask=rescale_mask, use_hsv=use_hsv, remove_mean_samplewise=remove_mean_samplewise,use_histeq=use_histeq,use_rgb_histeq=use_rgb_histeq,use_only_histeq=use_only_histeq,use_color_en=use_color_en,use_naik=use_naik,use_hct=use_hct,use_only_texture = use_only_texture)
# test, test_mask = ISIC.load_images(test_list, height, width,
# image_folder, mask_folder,
# remove_mean_imagenet=remove_mean_imagenet,
# rescale_mask=rescale_mask, use_hsv=use_hsv, remove_mean_samplewise=remove_mean_samplewise,use_histeq=use_histeq,use_rgb_histeq=use_rgb_histeq,use_only_histeq=use_only_histeq,use_color_en=use_color_en,use_naik=use_naik,use_hct=use_hct,use_only_texture = use_only_texture)
else:
val, val_mask = ISIC.load_images(val_list, height, width,
test_image_folder, test_mask_folder,
remove_mean_imagenet=remove_mean_imagenet,
rescale_mask=rescale_mask, use_hsv=use_hsv, remove_mean_samplewise=remove_mean_samplewise,use_histeq=use_histeq,use_rgb_histeq=use_rgb_histeq,use_only_histeq=use_only_histeq,use_color_en=use_color_en,use_naik=use_naik,use_hct=use_hct,use_only_texture = use_only_texture)
print ("Done loading images")
print(train.shape)
print(val.shape)
# print(test.shape)
if remove_mean_dataset:
print ("\nUsing Train Mean: {} Std: {}".format(train_mean, train_std))
train = (train-train_mean)/train_std
val = (val-train_mean)/train_std
# test = (test-train_mean)/train_std
print ("Using batch size = {}".format(batch_size))
print ('Fit model')
model_checkpoint = ModelCheckpoint(model_filename, monitor='val_jacc_coef', save_best_only=True, verbose=1)
data_gen_args = dict(featurewise_center=False,
samplewise_center=remove_mean_samplewise,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=0,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=True,
vertical_flip=True,
shear_range=0,
zoom_range=0.2,
channel_shift_range=0,
fill_mode='reflect')
data_gen_mask_args = data_gen_args.copy()
data_gen_mask_args.update({'fill_mode':'nearest','samplewise_center':False})
# data_gen_mask_args = dict(data_gen_args.items() + {'fill_mode':'nearest','samplewise_center':False}.items())
print ("Create Data Generator" )
train_datagen = ImageDataGenerator(**data_gen_args)
train_mask_datagen = ImageDataGenerator(**data_gen_mask_args)
train_generator = train_datagen.flow(train, batch_size=batch_size, seed=seed)
train_mask_generator = train_mask_datagen.flow(train_mask, batch_size=batch_size, seed=seed)
train_generator_f = myGenerator(train_generator, train_mask_generator,
remove_mean_imagenet=remove_mean_imagenet,
rescale_mask=rescale_mask, use_hsv=use_hsv)
# tbCallBack = TensorBoard(log_dir='./Graph', write_graph=True, write_images=True)
if dataset=="isic_noval_notest":
print ("Not using validation during training")
history = model.fit_generator(
train_generator_f,
steps_per_epoch=n_samples/batch_size,
epochs=nb_epoch,
callbacks=[model_checkpoint], initial_epoch=initial_epoch)
model.save(model_filename)
else:
history = model.fit_generator(
train_generator_f,
steps_per_epoch=n_samples/batch_size,
epochs=nb_epoch, validation_data=(val,val_mask),
callbacks=[model_checkpoint], initial_epoch=initial_epoch)
train = None; train_mask = None # clear memory
print ("Load best checkpoint")
model.load_weights(model_filename) # load best saved checkpoint
print(model_filename)
elif (do_ensemble==False):
print ('Load model')
model.load_weights(model_filename)
print(model_filename)
def predict_challenge(challenge_folder, challenge_predicted_folder, mask_pred_challenge=None, plot=True,validation=False):
print(model_filename)
challenge_list = ISIC.list_from_folder(challenge_folder+'/image/')
challenge_resized_folder = challenge_folder +"_{}_{}".format(height,width)
if not os.path.exists(challenge_resized_folder):
if(validation):
ISIC.resize_images(challenge_list, input_image_folder=challenge_folder+'/image/', input_mask_folder=challenge_folder+'/mask/',
output_image_folder=challenge_resized_folder+'/image/', output_mask_folder=challenge_resized_folder+'/mask/',
height=height, width=width)
else:
ISIC.resize_images(challenge_list, input_image_folder=challenge_folder+'/image/', input_mask_folder=None,
output_image_folder=challenge_resized_folder+'/image/', output_mask_folder=None,
height=height, width=width)
challenge_resized_list = [name.split(".")[0]+".jpg" for name in challenge_list] #challenge_list
challenge_images = ISIC.load_images(challenge_resized_list,
height, width, image_folder=challenge_resized_folder+'/image/',
mask_folder=None, remove_mean_imagenet=remove_mean_imagenet, use_hsv = use_hsv,remove_mean_samplewise=remove_mean_samplewise,use_histeq=use_histeq,use_rgb_histeq=use_rgb_histeq,use_only_histeq=use_only_histeq,use_color_en=use_color_en,use_naik=use_naik,use_hct=use_hct,use_only_texture = use_only_texture)
if remove_mean_dataset:
challenge_images = (challenge_images-train_mean)/train_std
if mask_pred_challenge is None:
mask_pred_challenge = model.predict(challenge_images)
mask_pred_challenge = np.where(mask_pred_challenge>=0.5, 1, 0)
mask_pred_challenge = mask_pred_challenge * 255
mask_pred_challenge = mask_pred_challenge.astype(np.uint8)
if (validation):
dice=0
jacc=0
sen = 0
acc = 0
spec = 0
mask_list = ISIC.list_masks_from_folder(challenge_folder+'/mask/')
for i in range(mask_pred_challenge.shape[0]):
img = mask_pred_challenge[i,:,:,:]
img = post_process(img)
orig_img_filename = os.path.join(challenge_folder+'/image/',challenge_list[i])
orig_img_size = cv2.imread(orig_img_filename).shape[:2]
resized_mask = cv2.resize(img,(orig_img_size[1],orig_img_size[0]),interpolation=cv2.INTER_LINEAR) #resize the predicted masks
true_mask = ISIC.get_mask(image_name=mask_list[i], mask_folder=challenge_folder+'/mask/', rescale_mask=rescale_mask) # read the original mask
current_dice, current_jacc = dice_jacc_single(true_mask, resized_mask, smooth = 0) # find the jacc coeff for the resized masks
dice = dice + current_dice
jacc = jacc + current_jacc
# name = os.path.basename(mask_list[i]).split('.')[0] + '.jpg'
# filename = '../results/compare/naik/'+'naik_'+name
# cv2.imwrite(filename,resized_mask)
_,pred_mask = cv2.threshold(resized_mask,127,255,cv2.THRESH_BINARY)
pred_mask = pred_mask/255
curr_sen = img_sensitivity(true_mask,pred_mask)
curr_acc = img_accuracy(true_mask,pred_mask)
curr_spec = img_specificity(true_mask, pred_mask)
print(curr_sen,curr_spec,curr_acc,current_dice,current_jacc)
sen = sen + curr_sen
spec = spec + curr_spec
acc = acc + curr_acc
dice = dice/mask_pred_challenge.shape[0]
jacc = jacc/mask_pred_challenge.shape[0]
print ("Original size validation dice coef : {:.4f}".format(dice))
print ("Original size validation jacc coef : {:.4f}".format(jacc))
acc = acc/len(mask_list)
sen = sen/len(mask_list)
spec = spec/len(mask_list)
print ("Original size validation acc : {:.4f}".format(acc))
print ("Original size validation sensitivity : {:.4f}".format(sen))
print ("Original size validation specificity : {:.4f}".format(spec))
print(model_filename)
else:
for i in range(mask_pred_challenge.shape[0]):
img = mask_pred_challenge[i,:,:,:]
img = post_process(img)
orig_img_filename = os.path.join(challenge_folder,challenge_list[i])
orig_img = cv2.imread(orig_img_filename)
orig_img_size = orig_img.shape[:2]
resized_mask = cv2.resize(img,(orig_img_size[1],orig_img_size[0]),interpolation=cv2.INTER_LINEAR) #resize the predicted masks
_,pred_mask = cv2.threshold(resized_mask,127,255,cv2.THRESH_BINARY)
img1_bg = cv2.bitwise_and(orig_img,orig_img,mask = pred_mask)
name = os.path.basename(challenge_list[i]).split('.')[0] + '.jpg'
filename = '../segmented2017/valid/'+name
cv2.imwrite(filename,img1_bg)
else:
if (validation):
dice=0
jacc=0
sen = 0
acc = 0
spec = 0
resized_masks=[]
mask_list = ISIC.list_masks_from_folder(challenge_folder+'/mask/')
for i in range(len(mask_pred_challenge)):
img = mask_pred_challenge[i,:,:,:].astype(np.uint8)
img = post_process(img)
orig_img_filename = os.path.join(challenge_folder+'/image/',challenge_list[i])
orig_img_size = cv2.imread(orig_img_filename).shape[:2]
resized_mask = cv2.resize(img,(orig_img_size[1],orig_img_size[0]),interpolation=cv2.INTER_LINEAR) #resize the predicted masks
resized_masks.append(resized_mask)
true_mask = ISIC.get_mask(image_name=mask_list[i], mask_folder=challenge_folder+'/mask/', rescale_mask=rescale_mask) # read the original mask
current_dice, current_jacc = dice_jacc_single(true_mask, resized_mask, smooth = 0) # find the jacc coeff for the resized masks
dice = dice + current_dice
jacc = jacc + current_jacc
_,pred_mask = cv2.threshold(resized_mask,127,255,cv2.THRESH_BINARY)
pred_mask = pred_mask/255
curr_sen = img_sensitivity(true_mask,pred_mask)
curr_acc = img_accuracy(true_mask,pred_mask)
curr_spec = img_specificity(true_mask, pred_mask)
print(curr_sen,curr_spec,curr_acc,current_dice,current_jacc)
sen = sen + curr_sen
spec = spec + curr_spec
acc = acc + curr_acc
# name = os.path.basename(challenge_list[i]).split('.')[0] + '_segmentation.png'
# filename = './predicted_masks/'+name
# cv2.imwrite(filename,resized_mask)
dice = dice/mask_pred_challenge.shape[0]
jacc = jacc/mask_pred_challenge.shape[0]
print ("Original size validation dice coef : {:.4f}".format(dice))
print ("Original size validation jacc coef : {:.4f}".format(jacc))
acc = acc/len(mask_list)
sen = sen/len(mask_list)
spec = spec/len(mask_list)
print ("Original size validation acc : {:.4f}".format(acc))
print ("Original size validation sensitivity : {:.4f}".format(sen))
print ("Original size validation specificity : {:.4f}".format(spec))
print(model_filename)
# with open('{}.pkl'.format(os.path.join(challenge_predicted_folder,model_name)), 'wb') as f:
# pkl.dump(mask_pred_challenge, f)
# challenge_predicted_folder = os.path.join(challenge_predicted_folder, model_name)
# if not os.path.exists(challenge_predicted_folder):
# os.makedirs(challenge_predicted_folder)
if(plot):
print ("Start challenge prediction:")
for i in range(len(challenge_list)):
print ("{}: {}".format(i, challenge_list[i]))
ISIC.show_images_full_sized(image_list = challenge_list, img_mask_pred_array = mask_pred_challenge,
image_folder=challenge_folder, mask_folder=None, index = i, output_folder=challenge_predicted_folder, plot=plot)
def join_predictions(pkl_folder, pkl_files, binary=False, threshold=0.5):
n_pkl = float(len(pkl_files))
print(n_pkl)
array = None
for fname in pkl_files:
with open(os.path.join(pkl_folder,fname+".pkl"), "rb") as f:
print(f)
tmp = pkl.load(f)
tmp = np.array(tmp).astype(np.float)
if binary:
tmp = np.where(tmp>=threshold, 1, 0)
if array is None:
array = tmp
else:
array = array + tmp
avg_pool_images = array/n_pkl
avg_pool_images = avg_pool_images.astype(np.uint8)
return avg_pool_images
if do_predict:
# free memory
train = None
train_mask = None
val = None
test = None
print ("Start Challenge Validation" )
predict_challenge(challenge_folder=validation_folder, challenge_predicted_folder=validation_predicted_folder, plot=False,validation=False)
# print "Start Challenge Test"
# predict_challenge(challenge_folder=test_folder, challenge_predicted_folder=test_predicted_folder, plot=False)
if do_ensemble:
threshold = 0.5
binary = False
val_array = join_predictions(pkl_folder = validation_predicted_folder, pkl_files=ensemble_pkl_filenames, binary=binary, threshold=threshold)
# test_array = join_predictions(pkl_folder = test_predicted_folder, pkl_files=ensemble_pkl_filenames, binary=binary, threshold=threshold)
model_name="ensemble_{}".format(threshold)
for f in ensemble_pkl_filenames:
model_name = model_name + "_" + f
print ("Predict Validation:")
plot = False
predict_challenge(challenge_folder=validation_folder, challenge_predicted_folder=validation_predicted_folder,
mask_pred_challenge=val_array, plot=plot,validation=True)