-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
executable file
·168 lines (159 loc) · 10.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import argparse
import os
import shutil
from utils.utilities import remove_old_files, get_meta_infos, run_experiment, make_boolean
# Empty folder with temporary scripts
# shutil.rmtree('./temporary_scripts', ignore_errors=True) # Uncomment if you want to delete all temporary scripts
os.makedirs('./temporary_scripts', exist_ok=True)
remove_old_files('./temporary_scripts')
# TODO look if there are other models available that we want to run: e.g. small or large ones
# TODO add more legal models maybe from nllpw: https://nllpw.org/workshop/program/
# HERE many models are reported: https://arxiv.org/pdf/2109.00904.pdf
meta_infos = get_meta_infos()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-as', '--accumulation_steps', help='Define the number of accumulation_steps.', default=None)
parser.add_argument('-bz', '--batch_size', help='Define the batch size.', default=None)
parser.add_argument('-dhs', '--do_hyperparameter_search',
help="Specify if you want to apply hyperparameter search.", default=False)
parser.add_argument('-fp16', '--do_fp16', help='Decide if you want to train and evaluate on fp16.', default=False)
parser.add_argument('-es', '--evaluation_strategy',
help="The evaluation strategy to adopt during training. Possible values are: no = No "
"evaluation is done during training; steps = Evaluation is done (and logged) every "
"eval_steps; epoch = Evaluation is done at the end of each epoch.",
default=None)
parser.add_argument('-esp', '--early_stopping_patience',
help="Define Early Stopping Patients.",
default=5)
parser.add_argument('-gn', '--gpu_number', help='Define which GPU you would like to use.', default=None)
parser.add_argument('-gib', '--greater_is_better',
help='Use in conjunction with load_best_model_at_end and metric_for_best_model to specify if better models should have a greater metric or not. Will default to: True if metric_for_best_model is set to a value that isn’t "loss" or "eval_loss". False if metric_for_best_model is not set, or set to "loss" or "eval_loss". ',
default=None)
parser.add_argument('-gm', '--gpu_memory', help='Define how much memory your GPUs have', default=16)
parser.add_argument('-hier', '--hierarchical',
help='Define whether you want to use a hierarchical model or not. '
'Caution: this will not work for every task',
default=None)
parser.add_argument('-ls', '--logging_strategy',
help="The logging strategy to adopt during training. Possible values are: no: No logging is "
"done during training ; epoch: Logging is done at the end of each epoch; steps: Logging "
"is done every logging_steps.",
default=None)
parser.add_argument('-lol', '--list_of_languages',
help='Define if you want to filter the training dataset by language.',
default=None)
parser.add_argument('-lc', '--lower_case', help='Define if lower case or not.', default=False)
parser.add_argument('-lmt', '--language_model_type',
help='Define which kind of language model you would like to use (e.g. xlm-roberta-base); '
'alternatively, you can format it in the following way:'
'{type: general|legal}_{language: ISO_CODE or "multilingual"]}_{size: small|base|large}. '
'If you specify "all" for any of the three parameters, '
'all models of that type/language/size will be used.',
default='all_all_all')
parser.add_argument('-los', '--list_of_seeds',
help='Define the random seeds for which you want to run the experiments.',
default=None)
parser.add_argument('-lr', '--learning_rate', help='Define the learning rate.', default=None)
parser.add_argument('-wd', '--weight_decay',
help='The weight decay to apply (if not zero) to all layers except all bias and LayerNorm weights in AdamW optimizer.',
default=None)
parser.add_argument('-wur', '--warmup_ratio',
help=' Ratio of total training steps used for a linear warmup from 0 to learning_rate.',
default=None)
parser.add_argument('-mfbm', '--metric_for_best_model',
help='Use in conjunction with load_best_model_at_end to specify the metric to use '
'to compare two different models. Must be the name of a metric '
'returned by the evaluation with or without the prefix "eval_". '
'Will default to "loss" if unspecified and load_best_model_at_end=True '
'(to use the evaluation loss). If you set this value, '
'greater_is_better will default to True. '
'Don’t forget to set it to False if your metric is better when lower. ',
default="eval_loss")
parser.add_argument('-nte', '--num_train_epochs', help='Define the number of training epochs.')
parser.add_argument('-rev', '--revision', help='The specific model version to use. It can be a branch name, '
'a tag name, or a commit id, since we use a git-based system for '
'storing models and other artifacts on huggingface.co, so revision '
'can be any identifier allowed by git.', default="main")
parser.add_argument('-rmo', '--running_mode',
help='Define whether you want to run the finetuning on all available training data ("default"), '
'on 100 examples for debugging ("debug") '
'or on 5% for testing purposes ("experimental").',
default='default')
parser.add_argument('-dmo', '--download_mode',
help='Define whether you want to redownload the dataset or not. '
'See the options in: '
'https://huggingface.co/docs/datasets/v1.5.0/loading_datasets.html#download-mode',
default='reuse_dataset_if_exists') # reuses raw downloaded files but makes dataset freshly
parser.add_argument('-t', '--task', help='Choose a task.', default='all')
# choices=['all'] + sorted(list(meta_infos["task_type_mapping"].keys())))
parser.add_argument('-ld', '--log_directory',
help='Specify the directory where you want to save your logs. '
'The directory at the end of the tree is used as the project name for wandb.',
default=None)
parser.add_argument('-nw', '--preprocessing_num_workers',
help="The number of processes to use for the preprocessing. "
"If it deadlocks, try setting this to 1.", default=1)
parser.add_argument('-cad', '--dataset_cache_dir',
help="Specify the directory you want to cache your datasets.",
default=None)
parser.add_argument('-ss', '--save_strategy',
help="The checkpoint save strategy to adopt during training. Possible values are: no: No save "
"is done during training; epoch: Save is done at the end of each epoch; steps: Save is "
"done every save_steps.",
default=None)
parser.add_argument('-est', '--eval_steps',
help='Number of update steps between two evaluations if evaluation_strategy="steps". Will '
'default to the same value as logging_steps if not set.',
default=None)
parser.add_argument('-lst', '--logging_steps',
help='Number of update steps between two logs if logging_strategy="steps".', default=None)
parser.add_argument('-stm', '--search_type_method',
help="Specify the hyperparameter search method. You can choose between grid, random, bayes.",
default="grid")
parser.add_argument('-sst', '--save_steps',
help='Number of updates steps before two checkpoint saves if save_strategy="steps".',
default=None)
args = parser.parse_args()
if args.download_mode == 'force_redownload':
# Remove the existing cache directory since everything will be redownloaded anyway
# Somehow the cache caused errors
if args.dataset_cache_dir is not None:
if os.path.isdir(args.dataset_cache_dir):
shutil.rmtree(args.dataset_cache_dir)
else:
os.mkdir(args.dataset_cache_dir)
# TODO set sequence length, segment length and segments from here instead of relying on default values
run_experiment(
accumulation_steps=args.accumulation_steps,
batch_size=args.batch_size,
dataset_cache_dir=args.dataset_cache_dir,
do_hyperparameter_search=make_boolean(args.do_hyperparameter_search),
do_fp16=make_boolean(args.do_fp16),
download_mode=args.download_mode,
early_stopping_patience=args.early_stopping_patience,
eval_steps=args.eval_steps,
evaluation_strategy=args.evaluation_strategy,
gpu_memory=args.gpu_memory,
gpu_number=args.gpu_number,
greater_is_better=args.greater_is_better,
hierarchical=args.hierarchical,
language_model_type=args.language_model_type,
learning_rate=args.learning_rate,
list_of_languages=args.list_of_languages,
list_of_seeds=args.list_of_seeds,
log_directory=args.log_directory,
logging_steps=args.logging_steps,
logging_strategy=args.logging_strategy,
lower_case=make_boolean(args.lower_case),
metric_for_best_model=args.metric_for_best_model,
num_train_epochs=args.num_train_epochs,
preprocessing_num_workers=args.preprocessing_num_workers,
revision=args.revision,
running_mode=args.running_mode,
save_steps=args.save_steps,
save_strategy=args.save_strategy,
search_type_method=args.search_type_method,
task=args.task,
warmup_ratio=args.warmup_ratio,
weight_decay=args.weight_decay
)