forked from CPernet/Robust-Correlations
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathskipped_correlation.m
599 lines (514 loc) · 23.6 KB
/
skipped_correlation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
function [r,t,h,outid,hboot,CI]=skipped_correlation(x,y,fig_flag)
% performs a robust correlation using pearson/spearman correlation on
% data cleaned up for bivariate outliers - that is after finding the
% central point in the distribution using the mid covariance determinant,
% orthogonal distances are computed to this point, and any data outside the
% bound defined by the idealf estimator of the interquartile range is removed.
%
% FORMAT:
% [r,t,h] = skipped_correlation(X);
% [r,t,h] = skipped_correlation(X,fig_flag);
% [r,t,h,outid,hboot,CI] = skipped_correlation(X,Y,fig_flag);
%
% INPUTS: X is a matrix and corelations between all pairs (default) are computed
% pairs (optional) is a n*2 matrix of pairs of column to correlate
% fig_flag (optional, ( by default) indicates to plot the data or not
%
% OUTPUTS:
% r is the pearson/spearman correlation
% t is the T value associated to the skipped correlation
% h is the hypothesis of no association at alpha = 5%
% outid is the index of bivariate outliers
%
% optional:
%
% hboot 1/0 declares the test significant based on CI (h depends on t)
% CI is the robust confidence interval computed by bootstrapping the
% cleaned-up data set and taking the .95 centile values
%
% This code rely on the mid covariance determinant as implemented in LIBRA
% - Verboven, S., Hubert, M. (2005), LIBRA: a MATLAB Library for Robust Analysis,
% Chemometrics and Intelligent Laboratory Systems, 75, 127-136.
% - Rousseeuw, P.J. (1984), "Least Median of Squares Regression,"
% Journal of the American Statistical Association, Vol. 79, pp. 871-881.
%
% The quantile of observations whose covariance is minimized is
% floor((n+size(X,2)*2+1)/2)),
% i.e. ((number of observations + number of variables*2)+1) / 2,
% thus for a correlation this is floor(n/2 + 5/2).
%
% See also MCDCOV, IDEALF.
% Cyril Pernet & Guillaume Rousselet, v1 - April 2012
% ---------------------------------------------------
% Copyright (C) Corr_toolbox 2012
%% data check
if nargin <2
error('not enough input arguments');
elseif nargin == 2
fig_flag = 1;
elseif nargin > 3
error('too many input arguments');
end
% transpose if x or y are not in column
if size(x,1) == 1 && size(x,2) > 1; x = x'; end
if size(y,1) == 1 && size(y,2) > 1; y = y'; end
% if X a vector and Y a matrix,
% repmat X to perform multiple tests on Y (or the other around)
% the default hypothesis is to test that all pairs of correlations are 0
hypothesis = 1;
% now if x is a vector and we test multiple y (or the other way around) one
% has to adjust for this
if size(x,2) == 1 && size(y,2) > 1
x = repmat(x,1,size(y,2));
hypothesis = 2;
elseif size(y,2) == 1 && size(x,2) > 1
y = repmat(y,1,size(x,2));
hypothesis = 2;
end
[n,p] = size(x);
if size(x) ~= size(y)
error('x and y are of different sizes')
elseif n < 10
error('robust effects can''t be computed with less than 10 observations')
elseif n > 200 && p < 10
warndlg('robust correlation and T value will be computed, but h is not validated for n>200')
elseif p > 10
warndlg('the familly wise error correction for skipped correlation is not available for more than 10 correlations')
end
gval = sqrt(chi2inv(0.975,2)); % in fact depends on size(X,2) but here always = 2
%% compute
for column = 1:p
if p>1
fprintf('skipped correlation: processing pair %g \n',column);
end
X = [x(:,column) y(:,column)];
% flag bivariate outliers
flag = bivariate_outliers(X);
% remove outliers
vec=1:n;
if sum(flag)==0
outid{column}=[];
else
flag=(flag>=1);
outid{column}=vec(flag);
end
keep=vec(~flag);
%% Pearson/Spearman correlation
if p == 1 % in the special case of a single test Pearson is valid too
a{column} = x(keep);
b{column} = y(keep);
rp = sum(detrend(a{column},'constant').*detrend(b{column},'constant')) ./ ...
(sum(detrend(a{column},'constant').^2).*sum(detrend(b{column},'constant').^2)).^(1/2);
tp = rp*sqrt((n-2)/(1-rp.^2));
r.Pearson = rp; t.Pearson = tp;
xrank = tiedrank(a{column},0); yrank = tiedrank(b{column},0);
rs = sum(detrend(xrank,'constant').*detrend(yrank,'constant')) ./ ...
(sum(detrend(xrank,'constant').^2).*sum(detrend(yrank,'constant').^2)).^(1/2);
ts = rs*sqrt((n-2)/(1-rs.^2));
r.Spearman = rs; t.Spearman = ts;
else % multiple tests, only use Spearman to control type 1 error
a{column} = x(keep,column); xrank = tiedrank(a{column},0);
b{column} = y(keep,column); yrank = tiedrank(b{column},0);
r(column) = sum(detrend(xrank,'constant').*detrend(yrank,'constant')) ./ ...
(sum(detrend(xrank,'constant').^2).*sum(detrend(yrank,'constant').^2)).^(1/2);
t(column) = r(column)*sqrt((n-2)/(1-r(column).^2));
end
end
%% get h
% the default test of 0 correlation is for alpha = 5%
c = 6.947 / n + 2.3197; % valid for n between 10 and 200
if p == 1
h.Pearson = abs(tp) >= c;
h.Spearman = abs(ts) >= c;
else
h= abs(t) >= c;
end
%% adjustement for multiple testing using the .95 quantile of Tmax
if p>1 && p<=10
switch hypothesis
case 1 % Hypothesis of 0 correlation between all pairs
if p == 2; q = 5.333*n^-1 + 2.374; end
if p == 3; q = 8.8*n^-1 + 2.78; end
if p == 4; q = 25.67*n^-1.2 + 3.03; end
if p == 5; q = 32.83*n^-1.2 + 3.208; end
if p == 6; q = 51.53*n^-1.3 + 3.372; end
if p == 7; q = 75.02*n^-1.4 + 3.502; end
if p == 8; q = 111.34*n^-1.5 + 3.722; end
if p == 9; q = 123.16*n^-1.5 + 3.825; end
if p == 10; q = 126.72*n^-1.5 + 3.943; end
case 2 % Hypothesis of 0 correlation between x1 and all y
if p == 2; q = 5.333*n^-1 + 2.374; end
if p == 3; q = 8.811*n^-1 + 2.54; end
if p == 4; q = 14.89*n^-1.2 + 2.666; end
if p == 5; q = 20.59*n^-1.2 + 2.920; end
if p == 6; q = 51.01*n^-1.5 + 2.999; end
if p == 7; q = 52.15*n^-1.5 + 3.097; end
if p == 8; q = 59.13*n^-1.5 + 3.258; end
if p == 9; q = 64.93*n^-1.5 + 3.286; end
if p == 10; q = 58.5*n^-1.5 + 3.414; end
end
h = abs(t) >= q;
end
%% bootstrap
if nargout > 4
[n,p]=size(a);
nboot = 1000;
level = 5/100;
if p > 1
level = level / p;
end
low = round((level*nboot)/2);
if low == 0
error('adjusted CI cannot be computed, too many tests for the number of observations')
else
high = nboot - low;
end
for column = 1:p
% here different resampling because length(a) changes
table = randi(length(a{column}),length(a{column}),nboot);
for B=1:nboot
% do Spearman
tmp1 = a{column}; xrank = tiedrank(tmp1(table(:,B)),0);
tmp2 = b{column}; yrank = tiedrank(tmp2(table(:,B)),0);
rsb(B,column) = sum(detrend(xrank,'constant').*detrend(yrank,'constant')) ./ ...
(sum(detrend(xrank,'constant').^2).*sum(detrend(yrank,'constant').^2)).^(1/2);
% get regression lines for Spearman
coef = pinv([xrank ones(length(a{column}),1)])*yrank;
sslope(B,column) = coef(1); sintercept(B,column) = coef(2,:);
if p == 1 % ie only 1 correlation thus Pearson is good too
rpb(B,column) = sum(detrend(tmp1(table(:,B)),'constant').*detrend(tmp2(table(:,B)),'constant')) ./ ...
(sum(detrend(tmp1(table(:,B)),'constant').^2).*sum(detrend(tmp2(table(:,B)),'constant').^2)).^(1/2);
coef = pinv([tmp1(table(:,B)) ones(length(a{column}),1)])*tmp2(table(:,B));
pslope(B,column) = coef(1); pintercept(B,column) = coef(2,:);
end
end
end
% in all cases get CI for Spearman
rsb = sort(rsb,1);
sslope = sort(sslope,1);
sintercept = sort(sintercept,1);
% CI and h
adj_nboot = nboot - sum(isnan(rsb));
adj_low = round((level*adj_nboot)/2);
adj_high = adj_nboot - adj_low;
for c=1:p
if adj_low(c) > 0
CI(:,c) = [rsb(adj_low(c),c) ; rsb(adj_high(c),c)];
hboot(c) = (rsb(adj_low(c),c) > 0) + (rsb(adj_high(c),c) < 0);
CIsslope(:,c) = [sslope(adj_low(c),c) ; sslope(adj_high(c),c)];
CIsintercept(:,c) = [sintercept(adj_low(c),c) ; sintercept(adj_high(c),c)];
else
CI(:,c) = [NaN NaN]';
hboot(c) = NaN;
CIsslope(:,c) = NaN;
CIsintercept(:,c) = NaN;
end
end
CIpslope = CIsslope; % used in plot - unless only one corr was computed
% case only one correlation
if p == 1
rpb = sort(rpb,1);
pslope = sort(pslope,1);
pintercept = sort(pintercept,1);
% CI and h
adj_nboot = nboot - sum(isnan(rpb));
adj_low = round((level*adj_nboot)/2);
adj_high = adj_nboot - adj_low;
if adj_low>0
CIp = [rpb(adj_low) ; rpb(adj_high)];
hbootp(c) = (rpb(adj_low) > 0) + (rpb(adj_high) < 0);
CIpslope(:,c) = [pslope(adj_low) ; pslope(adj_high)];
CIpintercept(:,c) = [pintercept(adj_low) ; pintercept(adj_high)];
else
CIp = [NaN NaN];
hbootp(c) = NaN;
CIpslope(:,c) = NaN;
CIpintercept(:,c) = NaN;
end
% update outputs
tmp = hboot; clear hboot;
hboot.Spearman = tmp;
hboot.Pearson = hbootp;
tmp = CI; clear CI
CI.Spearman = tmp';
CI.Pearson = CIp';
end
end
%% plot
if fig_flag ~= 0
answer = [];
if p > 1
answer = questdlg(['plots all ' num2str(p) ' correlations'],'Plotting option','yes','no','yes');
else
if fig_flag == 1
figure('Name','Skipped correlation');
set(gcf,'Color','w');
end
if nargout>4
if ~isnan(r.Pearson); subplot(1,3,1); end
M = sprintf('Skipped correlation \n Pearson r=%g CI=[%g %g] \n Spearman r=%g CI=[%g %g]',r.Pearson,CI.Pearson(1),CI.Pearson(2),r.Spearman,CI.Spearman(1),CI.Spearman(2));
else
M = sprintf('Skipped correlation \n Pearson r=%g h=%g \n Spearman r=%g h=%g',r.Pearson,h.Pearson,r.Spearman,h.Spearman);
end
scatter(a{1},b{1},100,'b','fill');
grid on; hold on;
hh = lsline; set(hh,'Color','r','LineWidth',4);
try
[XEmin, YEmin] = ellipse(a{column},b{column});
plot(real(XEmin), real(YEmin),'LineWidth',2);
MM = [min(XEmin) max(XEmin) min(YEmin) max(YEmin)];
catch ME
text(min(x)+0.01*(min(x)),max(y),'no ellipse found','Fontsize',12)
MM = [];
end
xlabel('X','Fontsize',12); ylabel('Y','Fontsize',12);
title(M,'Fontsize',16);
% add outliers and scale axis
scatter(x(outid{1}),y(outid{1}),100,'r','filled');
MM2 = [min(x) max(x) min(y) max(y)];
if isempty(MM); MM = MM2; end
A = floor(min([MM(:,1);MM2(:,1)]) - min([MM(:,1);MM2(:,1)])*0.01);
B = ceil(max([MM(:,2);MM2(:,2)]) + max([MM(:,2);MM2(:,2)])*0.01);
C = floor(min([MM(:,3);MM2(:,3)]) - min([MM(:,3);MM2(:,3)])*0.01);
D = ceil(max([MM(:,4);MM2(:,4)]) + max([MM(:,4);MM2(:,4)])*0.01);
axis([A B C D]);
box on;set(gca,'Fontsize',14)
if nargout>4 && sum(~isnan(CIpslope))==2
% add CI
y1 = refline(CIpslope(1),CIpintercept(1)); set(y1,'Color','r');
y2 = refline(CIpslope(2),CIpintercept(2)); set(y2,'Color','r');
y1 = get(y1); y2 = get(y2);
xpoints=[[y1.XData(1):y1.XData(2)],[y2.XData(2):-1:y2.XData(1)]];
step1 = y1.YData(2)-y1.YData(1); step1 = step1 / (y1.XData(2)-y1.XData(1));
step2 = y2.YData(2)-y2.YData(1); step2 = step2 / (y2.XData(2)-y2.XData(1));
filled=[[y1.YData(1):step1:y1.YData(2)],[y2.YData(2):-step2:y2.YData(1)]];
hold on; fillhandle=fill(xpoints,filled,[1 0 0]);
set(fillhandle,'EdgeColor',[1 0 0],'FaceAlpha',0.2,'EdgeAlpha',0.8);%set edge color
% add histograms of bootstrap
subplot(1,3,2); k = round(1 + log2(length(rpb))); hist(rpb,k); grid on;
mytitle = sprintf('Bootstrapped \n Pearsons'' corr h=%g', hboot.Pearson);
title(mytitle,'FontSize',16); hold on
xlabel('boot correlations','FontSize',14);ylabel('frequency','FontSize',14)
plot(repmat(CI.Pearson(1),max(hist(rpb,k)),1),[1:max(hist(rpb,k))],'r','LineWidth',4);
plot(repmat(CI.Pearson(2),max(hist(rpb,k)),1),[1:max(hist(rpb,k))],'r','LineWidth',4);
axis tight; colormap([.4 .4 1])
box on;set(gca,'Fontsize',14)
subplot(1,3,3); k = round(1 + log2(length(rsb))); hist(rsb,k); grid on;
mytitle = sprintf('Bootstrapped \n Spearmans'' corr h=%g', hboot.Spearman);
title(mytitle,'FontSize',16); hold on
xlabel('boot correlations','FontSize',14);ylabel('frequency','FontSize',14)
plot(repmat(CI.Spearman(1),max(hist(rsb,k)),1),[1:max(hist(rsb,k))],'r','LineWidth',4);
plot(repmat(CI.Spearman(2),max(hist(rsb,k)),1),[1:max(hist(rsb,k))],'r','LineWidth',4);
axis tight; colormap([.4 .4 1])
box on;set(gca,'Fontsize',14)
end
end
if strcmp(answer,'yes')
for f = 1:p
if fig_flag == 1
figure('Name',[num2str(f) ' Skipped correlation'])
set(gcf,'Color','w');
end
if nargout >4
if ~isnan(r(f)); subplot(1,3,1); index = 3; else subplot(1,2,1); index = 2; end
M = sprintf('Spearman skipped correlation r=%g \n %g%%CI [%g %g]',r(f),(1-level)*100,CI(1,f),CI(2,f));
else
subplot(1,2,1); index = 2;
M = sprintf('Spearman skipped correlation \n r=%g h=%g',r(f),h(f));
end
% plot data with outliers identified
scatter(a{f},b{f},100,'b','fill');
grid on; hold on;
hh = lsline; set(hh,'Color','r','LineWidth',4);
try
[XEmin, YEmin] = ellipse(a{f},b{f});
plot(XEmin, YEmin,'LineWidth',2);
MM = [min(XEmin) max(XEmin) min(YEmin) max(YEmin)];
catch ME
text(min(a{f})+0.01*(min(a{f})),max(b{f}),'no ellipse found','Fontsize',12)
MM = [];
end
xlabel('X','Fontsize',12); ylabel('Y','Fontsize',12);
title('Outlier detection','Fontsize',16);
% add outliers and scale axis
scatter(x(outid{f},f),y(outid{f},f),100,'r','filled');
MM2 = [min(x(:,f)) max(x(:,f)) min(y(:,f)) max(y(:,f))];
if isempty(MM); MM = MM2; end
A = floor(min([MM(:,1);MM2(:,1)]) - min([MM(:,1);MM2(:,1)])*0.01);
B = ceil(max([MM(:,2);MM2(:,2)]) + max([MM(:,2);MM2(:,2)])*0.01);
C = floor(min([MM(:,3);MM2(:,3)]) - min([MM(:,3);MM2(:,3)])*0.01);
D = ceil(max([MM(:,4);MM2(:,4)]) + max([MM(:,4);MM2(:,4)])*0.01);
axis([A B C D]);
box on;set(gca,'Fontsize',14)
% plot the rank and Spearman
subplot(1,index,2);
xrank = tiedrank(a{f},0);
yrank = tiedrank(b{f},0);
scatter(xrank,yrank,100,'b','fill'); grid on; hold on
hh = lsline; set(hh,'Color','r','LineWidth',4); axis tight
xlabel('X rank','Fontsize',12); ylabel('Y rank','Fontsize',12);
title(M,'Fontsize',16);
box on;set(gca,'Fontsize',14)
if nargout>4 && sum(isnan(CIpslope(:,f))) == 0
% add CI
y1 = refline(CIsslope(1,f),CIsintercept(1,f)); set(y1,'Color','r');
y2 = refline(CIsslope(2,f),CIsintercept(2,f)); set(y2,'Color','r');
y1 = get(y1); y2 = get(y2);
xpoints=[[y1.XData(1):y1.XData(2)],[y2.XData(2):-1:y2.XData(1)]];
step1 = y1.YData(2)-y1.YData(1); step1 = step1 / (y1.XData(2)-y1.XData(1));
step2 = y2.YData(2)-y2.YData(1); step2 = step2 / (y2.XData(2)-y2.XData(1));
filled=[[y1.YData(1):step1:y1.YData(2)],[y2.YData(2):-step2:y2.YData(1)]];
hold on; fillhandle=fill(xpoints,filled,[1 0 0]);
set(fillhandle,'EdgeColor',[1 0 0],'FaceAlpha',0.2,'EdgeAlpha',0.8);%set edge color
% add histograms of bootstrap
subplot(1,3,3); k = round(1 + log2(length(rsb(:,f)))); hist(rsb(:,f),k); grid on;
title(['Bootstrapped correlations h=' num2str(hboot(f))],'FontSize',16); hold on
xlabel('boot correlations','FontSize',14);ylabel('frequency','FontSize',14)
plot(repmat(CI(1,f),max(hist(rsb(:,f),k)),1),[1:max(hist(rsb(:,f),k))],'r','LineWidth',4);
plot(repmat(CI(2,f),max(hist(rsb(:,f),k)),1),[1:max(hist(rsb(:,f),k))],'r','LineWidth',4);
axis tight; colormap([.4 .4 1])
box on;set(gca,'Fontsize',14)
end
end
end
end
end
%% ploting with an ellipse around the good data points
function [XEmin, YEmin] = ellipse(X, Y)
% Ellipse function - 15th September 2008
% Returns X and Y values for an ellipse tightly surrounding all the data points
% Designed by Julien Rouger, Voice Neurocognition Laboratory
% Department of Psychology, University of Glasgow
% Check data format
if size(X, 1) > size(X, 2), X = X'; end
if size(Y, 1) > size(Y, 2), Y = Y'; end
% If the ellipse contains the convex hull, it will contain all data points
k = convhull(X, Y); k = k(1:end-1);
th = 0:pi/1000:2*pi;
ct = cos(th); st = sin(th);
xo = X(k); yo = Y(k);
n = size(xo, 2);
area = Inf;
% =================================================================================================================================
% Find best matching ellipse for any given four anchors in the convex hull
for t = 0:pi/16:2*pi
ct0 = cos(t); st0 = sin(t);
x = xo * ct0 + yo * st0;
y = -xo * st0 + yo * ct0;
% Four nested loops to get only once all ordered groups of 4 points
for f = 1:n - 3
for g = f + 1:n - 2
for h = g + 1:n - 1
for i = h + 1:n
coef1 = [x(f)^2 - x(g)^2; -2*(x(f) - x(g)); y(f)^2 - y(g)^2; -2*(y(f) - y(g))];
coef2 = [x(f)^2 - x(h)^2; -2*(x(f) - x(h)); y(f)^2 - y(h)^2; -2*(y(f) - y(h))];
coef3 = [x(f)^2 - x(i)^2; -2*(x(f) - x(i)); y(f)^2 - y(i)^2; -2*(y(f) - y(i))];
% Gaussian elimination
coef1 = coef1 * coef3(4) - coef3 * coef1(4);
coef2 = coef2 * coef3(4) - coef3 * coef2(4);
coef1 = coef1 * coef2(2) - coef2 * coef1(2);
% k = b^2/a^2
k = -coef1(3) / coef1(1);
% k negative -> no solution for these 4 points
if k > 0
coef2(3) = coef2(3) + coef2(1) * k; coef2(1) = 0;
coef3(3) = coef3(3) + coef3(1) * k; coef3(1) = 0;
% Gaussian elimination
coef2(2) = coef2(2) * k; coef3(2) = coef3(2) * k;
xc = -coef2(3) / coef2(2);
yc = -(coef3(2) * xc + coef3(3)) / coef3(4);
a = sqrt((x(f) - xc)^2 + (y(f) - yc)^2 / k);
b = sqrt(k * a^2);
XE = xc + a * ct;
YE = yc + b * st;
% Check if ellipse contains all points from the convex hull
ok = 1;
for j = 1:n
dx = x(j) - xc; dy = y(j) - yc;
rx = dx / a;
ry = dy / b;
if rx * rx + ry * ry > 1.0001
ok = 0;
end
end
% Update best fitting ellipse
if ok == 1 && a * b < area
area = a * b;
amin = a;
bmin = b;
xcmin = xc;
ycmin = yc;
tmin = t;
end
end
end
end
end
end
end
if area < Inf
ct0 = cos(tmin); st0 = sin(tmin);
XE = xcmin + amin * ct;
YE = ycmin + bmin * st;
XEmin = XE * ct0 - YE * st0;
YEmin = XE * st0 + YE * ct0;
end;
% Previous part found the best matching ellipse for any group of 4 points
% That's fine, but may be there exist better matches using groups of 3 points
% =================================================================================================================================
% Find best matching ellipse for any given three anchors in the convex hull
x = xo; y = yo;
% Three nested loops to get only once all ordered groups of 3 points
for f = 1:n - 2
for g = f + 1:n - 1
for h = g + 1:n
xc = (x(f) + x(g) + x(h)) / 3;
yc = (y(f) + y(g) + y(h)) / 3;
% Centre of gravity of this triangle
a(1) = x(f) - xc; b(1) = y(f) - yc;
a(2) = x(g) - xc; b(2) = y(g) - yc;
a(3) = x(h) - xc; b(3) = y(h) - yc;
% Newton iterative method
theta = pi; error = 1;
while abs(error) > 1e-6
cth = cos(theta); sth = sin(theta);
a1 = a(1) * cth + b(1) * sth; b1 = -a(1) * sth + b(1) * cth;
a2 = a(2) * cth + b(2) * sth; b2 = -a(2) * sth + b(2) * cth;
a3 = a(3) * cth + b(3) * sth; b3 = -a(3) * sth + b(3) * cth;
da1 = a1 - a2; da2 = a2 - a3; da3 = a3 - a1;
db1 = b1 - b2; db2 = b2 - b3; db3 = b3 - b1;
fth = (da1.^2 - da2.^2).*(db1.^2 - db3.^2)-(da1.^2 - da3.^2).*(db1.^2 - db2.^2);
dfth = 2*(da1.*db1 - da2.*db2).*(db1.^2 - db3.^2 + da1.^2 - da3.^2)- 2*(db1.*da1 - db3.*da3).*(da1.^2 - da2.^2 + db1.^2 - db2.^2);
error = - fth / dfth;
theta = theta + error;
end
cth = cos(theta); sth = sin(theta);
a1 = a(1) * cth + b(1) * sth; b1 = -a(1) * sth + b(1) * cth;
a2 = a(2) * cth + b(2) * sth; b2 = -a(2) * sth + b(2) * cth;
a3 = a(3) * cth + b(3) * sth; b3 = -a(3) * sth + b(3) * cth;
da1 = a1 - a2; da2 = a2 - a3;
db1 = b1 - b2; db2 = b2 - b3;
k = sqrt(-(da1.^2 - da2.^2) / (db1.^2 - db2.^2));
R = sqrt(((a1 - a2)^2 + k^2 * (b1 - b2)^2) / 3);
XE = xc + R * (ct * cth - st / k * sth);
YE = yc + R * (ct * sth + st / k * cth);
% Check if ellipse contains all points from the convex hull
ok = 1;
for i = 1:n
dx = x(i) - xc; dy = y(i) - yc;
rx = dx * cth + dy * sth;
ry = k * (-dx * sth + dy * cth);
if rx * rx + ry * ry > 1.0001 * R^2
ok = 0;
end
end
% Update best fitting ellipse
if ok == 1 && R * R / k < area
area = R * R / k;
XEmin = XE;
YEmin = YE;
end
end
end
end
end