forked from CPernet/Robust-Correlations
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMC_corrpval.asv
80 lines (71 loc) · 2.29 KB
/
MC_corrpval.asv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
function [p_alpha,v] = MC_corrpval(n,p,method,alphav,pairs,D)
% function to compute the alpha quantile estimate of the distribution of
% minimal p-values under the null of correlations in a n*p matrix with null
% covariance but variance D (I by default)
%
% FORMAT p_alpha = MC_corrpval(n,p,D)
%
% INPUT n the number of observations
% p the number of variables
% method can be 'Pearson', 'Spearman', 'Skipped Pearson', 'Skipped Spearman'
% pairs a m*2 matrix of variables to correlate (optional)
% D the variance of each variable (optional)
%
% p_alpha the alpha quantile estimate of the distribution of
% minimal p-values
%
%
% Cyril Pernet v3 - Novembre 2017
% ---------------------------------------------------
% Copyright (C) Corr_toolbox 2017
%% deal with inputs
if nargin == 0
help MC_corrpval
elsie nargin < 2
error('at least 2 inputs requested see help MC_corrpval');
end
if ~exist('pairs','var') || isempty(pairs)
pairs = nchoosek([1:p],2);
end
if ~exist('alphav','var')
alphav = 5/100;
end
%% generate the variance
SIGMA = eye(p);
if exist('D','var')
if length(D) ~= p
error('the vector D of variance must be of the same size as the number of variables p')
else
SIGMA(SIGMA==1) = D;
end
end
%% run the Monte Carlo simulation and keep smallest p values
v = NaN(1,1000);
parfor MC = 1:1000
fprintf('Running Monte Carlo %g\n',MC)
MVN = mvnrnd(zeros(1,p),SIGMA,n); % a multivariate normal distribution
if strcmp(method,'Pearson')
[~,~,pval] = Pearson(MVN,pairs);
elseif strcmp(method,'Pearson')
[~,~,pval] = Spearman(MVN,pairs);
elseif strcmp(method,'Skipped Pearson')
[r,t,pval] = skipped_Pearson(MVN,pairs);
elseif strcmp(method,'Skipped Spearman')
[r,t,pval] = skipped_Spearman(MVN,pairs);
end
v(MC) = min(pval);
end
%% get the Harell-Davis estimate of the alpha quantile
n = length(v);
for l=1:length(alphav)
q = alphav(l)*10; % for a decile
m1 = (n+1).*q;
m2 = (n+1).*(1-q);
vec = 1:n;
w = betacdf(vec./n,m1,m2)-betacdf((vec-1)./n,m1,m2);
y = sort(v);
p_alpha(l) = sum(w(:).*y(:));
end
% For p=6, n=20 alpha =.05 .025 .01 get
% 0.01122045 0.004343809 0.002354744
% 0.0240 0.0069 0.000027