This repository has been archived by the owner on Sep 21, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
PMOEsac.py
114 lines (106 loc) · 3.3 KB
/
PMOEsac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
from gym.envs.classic_control import PendulumEnv as env
import rlkit.torch.pytorch_util as ptu
from rlkit.data_management.env_replay_buffer import EnvReplayBuffer
from rlkit.envs.wrappers import NormalizedBoxEnv
from rlkit.launchers.launcher_util import setup_logger
from rlkit.samplers.data_collector import MdpPathCollector
from rlkit.torch.PMOEsac.PMOEsac import PMOESACTrainer
from rlkit.torch.PMOEsac.policies import MakeDeterministic
from rlkit.torch.PMOEsac.policies import TanhPMOEGaussianPolicy
from rlkit.torch.networks import FlattenPMOEMlp
from rlkit.torch.torch_rl_algorithm import TorchBatchRLAlgorithm
def experiment(variant):
expl_env = NormalizedBoxEnv(env())
eval_env = NormalizedBoxEnv(env())
obs_dim = expl_env.observation_space.low.size
action_dim = eval_env.action_space.low.size
M = variant['layer_size']
qf1 = FlattenPMOEMlp(
input_size=obs_dim + action_dim,
output_size=1,
hidden_sizes=[M, M],
)
qf2 = FlattenPMOEMlp(
input_size=obs_dim + action_dim,
output_size=1,
hidden_sizes=[M, M],
)
target_qf1 = FlattenPMOEMlp(
input_size=obs_dim + action_dim,
output_size=1,
hidden_sizes=[M, M],
)
target_qf2 = FlattenPMOEMlp(
input_size=obs_dim + action_dim,
output_size=1,
hidden_sizes=[M, M],
)
policy = TanhPMOEGaussianPolicy(
obs_dim=obs_dim,
action_dim=action_dim,
hidden_sizes=[M, M],
k=variant['trainer_kwargs']['k']
)
eval_policy = MakeDeterministic(policy)
eval_path_collector = MdpPathCollector(
eval_env,
eval_policy,
)
expl_path_collector = MdpPathCollector(
expl_env,
policy,
)
replay_buffer = EnvReplayBuffer(
variant['replay_buffer_size'],
expl_env,
)
trainer = PMOESACTrainer(
env=eval_env,
policy=policy,
qf1=qf1,
qf2=qf2,
target_qf1=target_qf1,
target_qf2=target_qf2,
**variant['trainer_kwargs']
)
algorithm = TorchBatchRLAlgorithm(
trainer=trainer,
exploration_env=expl_env,
evaluation_env=eval_env,
exploration_data_collector=expl_path_collector,
evaluation_data_collector=eval_path_collector,
replay_buffer=replay_buffer,
**variant['algorithm_kwargs']
)
algorithm.to(ptu.device)
algorithm.train()
if __name__ == "__main__":
# noinspection PyTypeChecker
variant = dict(
algorithm="PMOEsac",
version="normal",
layer_size=256,
replay_buffer_size=int(1E6),
algorithm_kwargs=dict(
num_epochs=3000,
num_eval_steps_per_epoch=5000,
num_trains_per_train_loop=1000,
num_expl_steps_per_train_loop=1000,
min_num_steps_before_training=1000,
max_path_length=1000,
batch_size=256,
),
trainer_kwargs=dict(
discount=0.99,
soft_target_tau=5e-3,
target_update_period=1,
policy_lr=3E-4,
qf_lr=3E-4,
reward_scale=1,
use_automatic_entropy_tuning=True,
k=4
),
)
setup_logger(env.__name__, variant=variant)
ptu.set_gpu_mode(True) # optionally set the GPU (default=False)
experiment(variant)