We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
大神你好,我本来打算将你的算法应用在ORB-SLAM里面,但是ORB-SLAM的特征提取方法基于四叉树做了均匀处理,分散得比较开,这样的话GMS匹配貌似没有优势了。反而用opencv自带的ORB算法,由于opencv的特征点扎堆,GMS更能够筛选出正确的配对。 在SLAM中,我们更希望特征点分散来精准估计位姿,这种期望貌似和GMS的栅格统计原理是不兼容的,请问大神有解决思路吗???
The text was updated successfully, but these errors were encountered:
1.我也遇到了相同的问题,所以目前只是在初始化的时候使用GMS,这时候检测的特征点比较多(在ORB-SLAM中是tracking时的两倍),所以就算比较分散也问题不大。 2.均匀分布会有利用算pose,但是会降低keypoint repeatiblity,导致匹配效果变差。这算是一个trade-off吧, 就是当图像足够简单的时候,即使降低keypoint repeatiblity也能得到好的匹配。这个问题我看最近一些文章也提到了,说是均匀分布的点更适合做光流tracking不太适合做特征匹配。目前还没有好的解决办法。
Sorry, something went wrong.
No branches or pull requests
大神你好,我本来打算将你的算法应用在ORB-SLAM里面,但是ORB-SLAM的特征提取方法基于四叉树做了均匀处理,分散得比较开,这样的话GMS匹配貌似没有优势了。反而用opencv自带的ORB算法,由于opencv的特征点扎堆,GMS更能够筛选出正确的配对。
在SLAM中,我们更希望特征点分散来精准估计位姿,这种期望貌似和GMS的栅格统计原理是不兼容的,请问大神有解决思路吗???
The text was updated successfully, but these errors were encountered: