-
Notifications
You must be signed in to change notification settings - Fork 162
/
draggan.py
156 lines (140 loc) · 5.37 KB
/
draggan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import torch, math
import numpy as np
from stylegan2 import Generator
import torch.nn.functional as functional
def linear(feature, p0, p1, d, axis=0):
f0 = feature[..., p0[0], p0[1]]
f1 = feature[..., p1[0], p1[1]]
weight = abs(d[axis])
f = (1 - weight) * f0 + weight * f1
return f
def bilinear(feature, qi, d):
y0, x0 = qi
dy, dx = d
d = (dx, dy)
dx = 1 if dx >= 0 else -1
dy = 1 if dy >= 0 else -1
x1 = x0 + dx
y1 = y0 + dy
fx1 = linear(feature, (x0, y0), (x1, y0), d, axis=0)
fx2 = linear(feature, (x0, y1), (x1, y1), d, axis=0)
weight = abs(d[1])
fx = (1 - weight) * fx1 + weight * fx2
return fx
def motion_supervision(F0, F, pi, ti, r1=3, M=None):
F = functional.interpolate(F, [256, 256], mode="bilinear")
F0 = functional.interpolate(F0, [256, 256], mode="bilinear")
dw, dh = ti[0] - pi[0], ti[1] - pi[1]
norm = math.sqrt(dw**2 + dh**2)
w = (max(0, pi[0] - r1), min(256, pi[0] + r1))
h = (max(0, pi[1] - r1), min(256, pi[1] + r1))
d = torch.tensor(
(dw / norm, dh / norm),
dtype=F.dtype, device=F.device,
).reshape(1, 1, 1, 2)
grid_h, grid_w = torch.meshgrid(
torch.tensor(range(h[0], h[1])),
torch.tensor(range(w[0], w[1])),
indexing='xy',
)
grid = torch.stack([grid_w, grid_h], dim=-1).unsqueeze(0)
grid = (grid / 255 - 0.5) * 2
grid_d = grid + 2 * d / 255
sample = functional.grid_sample(
F, grid, mode='bilinear', padding_mode='border',
align_corners=True,
)
sample_d = functional.grid_sample(
F, grid_d, mode='bilinear', padding_mode='border',
align_corners=True,
)
loss = (sample_d - sample.detach()).abs().mean(1).sum()
return loss
@torch.no_grad()
def point_tracking(F0, F, pi, p0, r2=12):
F = functional.interpolate(F, [256, 256], mode="bilinear")
F0 = functional.interpolate(F0, [256, 256], mode="bilinear")
x = (max(0, pi[0] - r2), min(256, pi[0] + r2))
y = (max(0, pi[1] - r2), min(256, pi[1] + r2))
base = F0[..., p0[1], p0[0]].reshape(1, -1, 1, 1)
diff = (F[..., y[0]:y[1], x[0]:x[1]] - base).abs().mean(1)
idx = diff.argmin()
dy = int(idx / (x[1] - x[0]))
dx = int(idx % (x[1] - x[0]))
npi = (x[0] + dx, y[0] + dy)
return npi
def requires_grad(model, flag=True):
for p in model.parameters():
p.requires_grad = flag
class DragGAN():
def __init__(self, device, layer_index=6):
self.generator = Generator(256, 512, 8).to(device)
requires_grad(self.generator, False)
self._device = device
self.layer_index = layer_index
self.latent = None
self.F0 = None
self.optimizer = None
self.p0 = None
def load_ckpt(self, path):
print(f'loading checkpoint from {path}')
ckpt = torch.load(path, map_location=self._device)
self.generator.load_state_dict(ckpt["g_ema"], strict=False)
print('loading checkpoint successed!')
def to(self, device):
if self._device != device:
self.generator = self.generator.to(device)
self._device = device
@torch.no_grad()
def generate_image(self, seed):
z = torch.from_numpy(
np.random.RandomState(seed).randn(1, 512).astype(np.float32)
).to(self._device)
image, self.latent, self.F0 = self.generator(
[z], return_latents=True, return_features=True, randomize_noise=False,
)
image, self.F0 = image[0], self.F0[self.layer_index*2+1].detach()
image = image.detach().cpu().permute(1, 2, 0).numpy()
image = (image / 2 + 0.5).clip(0, 1).reshape(-1)
return image
@property
def device(self):
return self._device
def __call__(self, *args, **kwargs):
return self.generator(*args, **kwargs)
def step(self, points):
if self.optimizer is None:
len_pts = (len(points) // 2) * 2
if len_pts == 0:
print('Select at least one pair of points')
return False, None
self.trainable = self.latent[:, :self.layer_index*2, :].detach(
).requires_grad_(True)
self.fixed = self.latent[:, self.layer_index*2:, :].detach(
).requires_grad_(False)
self.optimizer = torch.optim.Adam([self.trainable], lr=2e-3)
points = points[:len_pts]
self.p0 = points[::2]
self.optimizer.zero_grad()
trainable_fixed = torch.cat([self.trainable, self.fixed], dim=1)
image, _, features = self.generator(
[trainable_fixed], input_is_latent=True,
return_features=True, randomize_noise=False,
)
features = features[self.layer_index*2+1]
loss = 0
for i in range(len(self.p0)):
loss += motion_supervision(self.F0, features, points[2*i], points[2*i+1])
print(loss)
loss.backward()
self.optimizer.step()
image, _, features = self.generator(
[trainable_fixed], input_is_latent=True,
return_features=True, randomize_noise=False,
)
features = features[self.layer_index*2+1]
image = image[0].detach().cpu().permute(1, 2, 0).numpy()
image = (image / 2 + 0.5).clip(0, 1).reshape(-1)
for i in range(len(self.p0)):
points[2*i] = point_tracking(self.F0, features, points[2*i], self.p0[i])
return True, (points, image)