-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathAdditive_mixing_layers_extraction.py
566 lines (403 loc) · 21.5 KB
/
Additive_mixing_layers_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
# -*- coding: utf-8 -*-
from __future__ import print_function, division
import time
import warnings
import json
import time
import PIL.Image as Image
from Convexhull_simplification import *
import scipy.sparse
import scipy.optimize
import scipy
from trimesh import *
import pyximport
pyximport.install(reload_support=True)
from GteDistPointTriangle import *
global DEMO
DEMO=False
def Convert_scipy_convexhull_face_ind_to_basic_face_ind(hull):
hvertices=hull.points[hull.vertices]
points_index=-1*np.ones(hull.points.shape[0],dtype=np.int32)
points_index[hull.vertices]=np.arange(len(hull.vertices))
hfaces=np.asarray([points_index[hface] for hface in hull.simplices])
#### to make sure each faces's points are countclockwise order.
for index in range(len(hfaces)):
face=hvertices[hfaces[index]]
normals=hull.equations[index,:3]
p0=face[0]
p1=face[1]
p2=face[2]
n=np.cross(p1-p0,p2-p0)
if np.dot(normals,n)<0:
hfaces[index][[1,0]]=hfaces[index][[0,1]]
return hfaces.tolist()
### assume data is in range(0,1)
def Hull_Simplification_unspecified_M(data, output_prefix, start_save=10):
# hull=ConvexHull(data.reshape((-1,3)), qhull_options="Qs")
hull=ConvexHull(data.reshape((-1,3)))
origin_vertices=hull.points[ hull.vertices ]
print ("original hull vertices number: ", len(hull.vertices))
# with open( output_prefix+"-original_hull_vertices.js", 'w' ) as myfile:
# json.dump({'vs': (hull.points[ hull.vertices ].clip(0.0,1.0)*255).tolist(),'faces': (hull.points[ hull.simplices ].clip(0.0,1.0)*255).tolist()}, myfile, indent = 4 )
output_rawhull_obj_file=output_prefix+"-mesh_obj_files.obj"
write_convexhull_into_obj_file(hull, output_rawhull_obj_file)
max_loop=5000
for i in range(max_loop):
mesh=TriMesh.FromOBJ_FileName(output_rawhull_obj_file)
old_num=len(mesh.vs)
old_vertices=mesh.vs
mesh=remove_one_edge_by_finding_smallest_adding_volume_with_test_conditions(mesh,option=2)
# newhull=ConvexHull(mesh.vs, qhull_options="Qs")
hull=ConvexHull(mesh.vs)
write_convexhull_into_obj_file(hull, output_rawhull_obj_file)
if len(hull.vertices) <= start_save:
name = output_prefix + "-%02d.js" % len(hull.vertices)
with open( name, 'w' ) as myfile:
json.dump({'vs': (hull.points[ hull.vertices ].clip(0.0,1.0)*255).tolist(),'faces': (hull.points[ hull.simplices ].clip(0.0,1.0)*255).tolist()}, myfile, indent = 4 )
if len(hull.vertices)==old_num or len(hull.vertices)==4:
return
def Hull_Simplification_old(arr, M, output_prefix):
hull=ConvexHull(arr.reshape((-1,3)))
# print hull.points[hull.vertices].shape
output_rawhull_obj_file=output_prefix+"-mesh_obj_files.obj"
write_convexhull_into_obj_file(hull, output_rawhull_obj_file)
mesh=TriMesh.FromOBJ_FileName(output_rawhull_obj_file)
max_loop=5000
for i in range(max_loop):
old_num=len(mesh.vs)
mesh=TriMesh.FromOBJ_FileName(output_rawhull_obj_file)
mesh=remove_one_edge_by_finding_smallest_adding_volume_with_test_conditions(mesh,option=2)
newhull=ConvexHull(mesh.vs)
write_convexhull_into_obj_file(newhull, output_rawhull_obj_file)
if len(mesh.vs)==M or len(newhull.vertices)==old_num or len(newhull.vertices)==4:
Final_hull=newhull
break
Hull_vertices=Final_hull.points[Final_hull.vertices].clip(0,1)
return Hull_vertices
# ##### assume arr is in range(0,1)
# def Hull_Simplification_new(arr, M, output_prefix):
# hull=ConvexHull(arr.reshape((-1,3)))
# max_loop=5000
# for i in range(max_loop):
# mesh = TriMesh()
# mesh.vs = hull.points[hull.vertices].tolist()
# mesh.faces = Convert_scipy_convexhull_face_ind_to_basic_face_ind(hull)
# mesh.topology_changed()
# old_num=len(hull.vertices)
# mesh=remove_one_edge_by_finding_smallest_adding_volume_with_test_conditions(mesh,option=2)
# hull=ConvexHull(mesh.vs)
# if len(hull.vertices)==M or len(hull.vertices)==old_num or len(hull.vertices)==4:
# Final_hull=hull
# break
# Hull_vertices=Final_hull.points[Final_hull.vertices].clip(0,1)
# return Hull_vertices
# def outsidehull_points_num_ratio(hull_vertices, points):
# de=Delaunay(hull_vertices)
# ind=de.find_simplex(points, tol=1e-8)
# return (len(ind[ind<0])*1.0)/len(ind)
def outsidehull_points_distance(hull_vertices, points):
######### here points are all pixel colors
hull=ConvexHull(hull_vertices)
de=Delaunay(hull_vertices)
ind=de.find_simplex(points, tol=1e-8)
total_distance=[]
for i in range(points.shape[0]):
if ind[i]<0:
dist_list=[]
for j in range(hull.simplices.shape[0]):
result = DCPPointTriangle( points[i], hull.points[hull.simplices[j]] )
dist_list.append(result['distance'])
total_distance.append(min(dist_list))
total_distance=np.asarray(total_distance)
return ((total_distance**2).sum()/len(points))**0.5
def outsidehull_points_distance_for_using_origin_hull_vertices(hull_vertices, all_points, points):
######### here all_points are all pixel colors. points are original hull vertices of all pixel colors.
hull=ConvexHull(hull_vertices)
de=Delaunay(hull_vertices)
ind1=de.find_simplex(all_points, tol=1e-8)
length1=len(ind1[ind1<0])
ind=de.find_simplex(points, tol=1e-8)
length=len(ind[ind<0])
total_distance=[]
for i in range(points.shape[0]):
if ind[i]<0:
dist_list=[]
for j in range(hull.simplices.shape[0]):
result = DCPPointTriangle( points[i], hull.points[hull.simplices[j]] )
dist_list.append(result['distance'])
total_distance.append(min(dist_list))
total_distance=np.asarray(total_distance)
pixel_numbers=len(all_points)
# return ((total_distance**2).sum()/pixel_numbers)**0.5
return ((((total_distance**2).sum()*length1)/length)/pixel_numbers)**0.5
def outsidehull_points_distance_unique_data_version(hull_vertices, points, counts):
######### here, points are unique pixel colors, it will be faster than directly give all pixel colors.
hull=ConvexHull(hull_vertices)
de=Delaunay(hull_vertices)
ind=de.find_simplex(points, tol=1e-8)
total_distance=[]
for i in range(points.shape[0]):
if ind[i]<0:
dist_list=[]
for j in range(hull.simplices.shape[0]):
result = DCPPointTriangle( points[i], hull.points[hull.simplices[j]] )
dist_list.append(result['distance'])
total_distance.append(min(dist_list))
total_distance=np.asarray(total_distance)
return (((total_distance**2)*counts[ind<0]).sum()/counts.sum())**0.5
from collections import Counter
def get_unique_colors_and_their_counts(arr):
# arr shape is N*3
#### slow
# ### colors2Count dict
# colors2Count ={}
# unique_arr=list(set(list(tuple(element) for element in arr)))
# for element in unique_arr:
# colors2Count.setdefault(tuple(element),0)
# for index in range(len(arr)):
# colors2Count[tuple(arr[index])]+=1
# unique_colors=np.asarray(list(colors2Count.keys()))
# counts=np.asarray(list(colors2Count.values()))
# # print unique_colors.shape
# # print counts.shape
# #### faster
# a=map(tuple, arr)
# b=Counter(a)
# unique_colors, counts=np.asarray(list(b.keys())), np.asarray(list(b.values()))
#### fastest
unique_colors, counts=np.unique(arr, axis=0, return_counts=True)
return unique_colors, counts
### assume data is in range(0,1)
def Hull_Simplification_determined_version(data, output_prefix, num_thres=0.1, error_thres=2.0/255.0, SAVE=True, option="use_quantitized_colors"):
# hull=ConvexHull(data.reshape((-1,3)), qhull_options="Qs")
hull=ConvexHull(data.reshape((-1,3)))
origin_vertices=hull.points[ hull.vertices ]
print ("original hull vertices number: ", len(hull.vertices))
# with open( output_prefix+"-original_hull_vertices.js", 'w' ) as myfile:
# json.dump({'vs': (hull.points[ hull.vertices ].clip(0.0,1.0)*255).tolist(),'faces': (hull.points[ hull.simplices ].clip(0.0,1.0)*255).tolist()}, myfile, indent = 4 )
output_rawhull_obj_file=output_prefix+"-mesh_obj_files.obj"
write_convexhull_into_obj_file(hull, output_rawhull_obj_file)
if option=="unique_pixel_colors":
unique_data, pixel_counts=get_unique_colors_and_their_counts(data.reshape((-1,3)))
print (len(unique_data))
elif option=="use_quantitized_colors":
print (option)
new_data=(((data*255).round().astype(np.uint8)//8)*8+4)/255.0
unique_data, pixel_counts=get_unique_colors_and_their_counts(new_data.reshape((-1,3)))
print (len(unique_data))
max_loop=5000
for i in range(max_loop):
if i%10==0:
print ("loop: ", i)
mesh=TriMesh.FromOBJ_FileName(output_rawhull_obj_file)
old_num=len(mesh.vs)
old_vertices=mesh.vs
# print ("WHY1")
mesh=remove_one_edge_by_finding_smallest_adding_volume_with_test_conditions(mesh,option=2)
# newhull=ConvexHull(mesh.vs, qhull_options="Qs")
hull=ConvexHull(mesh.vs)
write_convexhull_into_obj_file(hull, output_rawhull_obj_file)
# print ("WHY2")
if len(hull.vertices) <= 10:
# outside_ratio=outsidehull_points_num_ratio(hull.points[ hull.vertices ].clip(0.0,1.0), data.reshape((-1,3)))
# if outside_ratio>num_thres:
if option=="all_pixel_colors": ### basic one.
reconstruction_errors=outsidehull_points_distance(hull.points[ hull.vertices ].clip(0.0,1.0), data.reshape((-1,3)))
elif option=="unique_pixel_colors": ### results should be same with above opiton, but faster
reconstruction_errors=outsidehull_points_distance_unique_data_version(hull.points[ hull.vertices ].clip(0.0,1.0), unique_data, pixel_counts)
elif option=="origin_convexhull_vertices":
# reconstruction_errors=outsidehull_points_distance(hull.points[ hull.vertices ].clip(0.0,1.0), origin_vertices.reshape((-1,3))) ###error_thres may need to be pretty large. #### may use 10/255.0 to be threshold
reconstruction_errors=outsidehull_points_distance_for_using_origin_hull_vertices(hull.points[ hull.vertices ].clip(0.0,1.0), data.reshape((-1,3)), origin_vertices.reshape((-1,3))) ### may use 5/255.0 to be threshold.
elif option=="use_quantitized_colors":
reconstruction_errors=outsidehull_points_distance_unique_data_version(hull.points[ hull.vertices ].clip(0.0,1.0), unique_data, pixel_counts)
# print reconstruction_errors
if reconstruction_errors>error_thres:
oldhull=ConvexHull(old_vertices)
if SAVE:
name = output_prefix + "-%02d.js" % len(oldhull.vertices)
with open( name, 'w' ) as myfile:
json.dump({'vs': (oldhull.points[ oldhull.vertices ].clip(0.0,1.0)*255).tolist(),'faces': (oldhull.points[ oldhull.simplices ].clip(0.0,1.0)*255).tolist()}, myfile, indent = 4 )
return oldhull.points[ oldhull.vertices ].clip(0.0,1.0)
if len(hull.vertices)==old_num or len(hull.vertices)==4:
if SAVE:
name = output_prefix + "-%02d.js" % len(hull.vertices)
with open( name, 'w' ) as myfile:
json.dump({'vs': (hull.points[ hull.vertices ].clip(0.0,1.0)*255).tolist(),'faces': (hull.points[ hull.simplices ].clip(0.0,1.0)*255).tolist()}, myfile, indent = 4 )
return hull.points[ hull.vertices ].clip(0.0,1.0)
def recover_ASAP_weights_using_scipy_delaunay(Hull_vertices, data, option=1):
###modified from https://codereview.stackexchange.com/questions/41024/faster-computation-of-barycentric-coordinates-for-many-points (Gareth Rees)
# Load points
points = Hull_vertices
# Load targets
targets = data
ntargets = len(targets)
start=time.time()
# Compute Delaunay triangulation of points.
tri = Delaunay(points)
end1=time.time()
# Find the tetrahedron containing each target (or -1 if not found)
tetrahedra = tri.find_simplex(targets, tol=1e-6)
# print tetrahedra[tetrahedra==-1]
# Affine transformation for tetrahedron containing each target
X = tri.transform[tetrahedra, :data.shape[1]]
# Offset of each target from the origin of its containing tetrahedron
Y = targets - tri.transform[tetrahedra, data.shape[1]]
# First three barycentric coordinates of each target in its tetrahedron.
# The fourth coordinate would be 1 - b.sum(axis=1), but we don't need it.
b = np.einsum('...jk,...k->...j', X, Y)
barycoords=np.c_[b,1-b.sum(axis=1)]
end2=time.time()
############# this is slow for large size weights like N*1000
if option==1:
weights_list=np.zeros((targets.shape[0],points.shape[0]))
num_tetra=len(tri.simplices)
all_index=np.arange(len(targets))
for i in range(num_tetra):
weights_list[all_index[tetrahedra==i][:,None], np.array(tri.simplices[i])]=barycoords[all_index[tetrahedra==i],:]
elif option==2:
rows = np.repeat(np.arange(len(data)).reshape((-1,1)), len(tri.simplices[0]), 1).ravel().tolist()
cols = []
vals = []
for i in range(len(data)):
cols+=tri.simplices[tetrahedra[i]].tolist()
vals+=barycoords[i].tolist()
weights_list = scipy.sparse.coo_matrix( ( vals, ( rows, cols ) ), shape = ( len(data), len(Hull_vertices)) ).tocsr()
elif option==3:
rows = np.repeat(np.arange(len(data)).reshape((-1,1)), len(tri.simplices[0]), 1).ravel()
# cols = np.empty(rows.shape, rows.dtype)
# vals = np.empty(rows.shape)
# d = len(tri.simplices[0])
# for i in range(len(data)):
# cols[d*i:d*(i+1)] = tri.simplices[tetrahedra[i]]
# vals[d*i:d*(i+1)] = barycoords[i]
cols=tri.simplices[tetrahedra].ravel()
vals = barycoords.ravel()
weights_list = scipy.sparse.coo_matrix( ( vals, ( rows, cols ) ), shape = ( len(data), len(Hull_vertices)) ).tocsr()
end3=time.time()
print (end1-start, end2-end1, end3-end2)
return weights_list
def Get_ASAP_weights_using_Tan_2016_triangulation_and_then_barycentric_coordinates(img_label_origin, origin_order_tetra_prime, outprefix, order=0):
img_label=img_label_origin.copy() ### do not modify img_label_origin
if isinstance(order, (list, tuple, np.ndarray)):
pass
elif order==0: ## use black as first pigment
diff=abs(origin_order_tetra_prime-np.array([[0,0,0]])).sum(axis=-1)
order=np.argsort(diff)
elif order==1: ## use white
diff=abs(origin_order_tetra_prime-np.array([[1,1,1]])).sum(axis=-1)
order=np.argsort(diff)
tetra_prime=origin_order_tetra_prime[order]
print (tetra_prime[0])
img_shape=img_label.shape
img_label=img_label.reshape((-1,3))
img_label_backup=img_label.copy()
hull=ConvexHull(tetra_prime)
test_inside=Delaunay(tetra_prime)
label=test_inside.find_simplex(img_label,tol=1e-8)
# print len(label[label==-1])
### modify img_label[] to make all points are inside the simplified convexhull
for i in range(img_label.shape[0]):
# print i
if label[i]<0:
dist_list=[]
cloest_points=[]
for j in range(hull.simplices.shape[0]):
result = DCPPointTriangle( img_label[i], hull.points[hull.simplices[j]] )
dist_list.append(result['distance'])
cloest_points.append(result['closest'])
dist_list=np.asarray(dist_list)
index=np.argmin(dist_list)
img_label[i]=cloest_points[index]
### assert
test_inside=Delaunay(tetra_prime)
label=test_inside.find_simplex(img_label,tol=1e-8)
# print len(label[label==-1])
assert(len(label[label==-1])==0)
### colors2xy dict
colors2xy ={}
unique_image_label=list(set(list(tuple(element) for element in img_label)))
for element in unique_image_label:
colors2xy.setdefault(tuple(element),[])
for index in range(len(img_label)):
element=img_label[index]
colors2xy[tuple(element)].append(index)
unique_colors=np.array(list(colors2xy.keys()))
unique_image_label=unique_colors.copy()
vertices_list=tetra_prime
tetra_pixel_dict={}
for face_vertex_ind in hull.simplices:
# print face_vertex_ind
if (face_vertex_ind!=0).all():
i,j,k=face_vertex_ind
tetra_pixel_dict.setdefault(tuple((i,j,k)),[])
index_list=np.array(list(np.arange(len(unique_image_label))))
for face_vertex_ind in hull.simplices:
if (face_vertex_ind!=0).all():
# print face_vertex_ind
i,j,k=face_vertex_ind
tetra=np.array([vertices_list[0],vertices_list[i],vertices_list[j],vertices_list[k]])
try:
#### use try here, because sometimes the tetra is nearly flat, will cause qhull error to stop, we do not want to stop, we just skip.
# print (tetra)
test_Del=Delaunay(tetra)
# print len(index_list)
if len(index_list)!=0:
label=test_Del.find_simplex(unique_image_label[index_list],tol=1e-8)
chosen_index=list(index_list[label>=0])
tetra_pixel_dict[tuple((i,j,k))]+=chosen_index
index_list=np.array(list(set(index_list)-set(chosen_index)))
except Exception as e:
pass
# print (tetra)
# print (e)
# print index_list
assert(len(index_list)==0)
pixel_num=0
for key in tetra_pixel_dict:
pixel_num+=len(tetra_pixel_dict[key])
# print pixel_num
assert(pixel_num==unique_image_label.shape[0])
### input is like (0,1,2,3,4) then shortest_path_order is (1,2,3,4), 0th is background color, usually is white
shortest_path_order=tuple(np.arange(len(tetra_prime))[1:])
# print shortest_path_order
unique_weights_list=np.zeros((unique_image_label.shape[0],len(tetra_prime)))
for vertice_tuple in tetra_pixel_dict:
# print vertice_tuple
vertice_index_inglobalorder=np.asarray(shortest_path_order)[np.asarray(sorted(list(shortest_path_order).index(s) for s in vertice_tuple))]
vertice_index_inglobalorder_tuple=tuple(list(vertice_index_inglobalorder))
# print vertice_index_inglobalorder_tuple
colors=np.array([vertices_list[0],
vertices_list[vertice_index_inglobalorder_tuple[0]],
vertices_list[vertice_index_inglobalorder_tuple[1]],
vertices_list[vertice_index_inglobalorder_tuple[2]]
])
pixel_index=np.array(tetra_pixel_dict[vertice_tuple])
if len(pixel_index)!=0:
arr=unique_image_label[pixel_index]
Y=recover_ASAP_weights_using_scipy_delaunay(colors, arr)
unique_weights_list[pixel_index[:,None],np.array([0]+list(vertice_index_inglobalorder_tuple))]=Y.reshape((arr.shape[0],-1))
#### from unique weights to original shape weights
mixing_weights=np.zeros((len(img_label),len(tetra_prime)))
for index in range(len(unique_image_label)):
element=unique_image_label[index]
index_list=colors2xy[tuple(element)]
mixing_weights[index_list,:]=unique_weights_list[index,:]
# barycentric_weights=barycentric_weights.reshape((img_shape[0],img_shape[1],-1))
origin_order_mixing_weights=np.ones(mixing_weights.shape)
#### to make the weights order is same as orignal input vertex order
origin_order_mixing_weights[:,order]=mixing_weights
origin_order_mixing_weights=origin_order_mixing_weights.reshape((img_shape[0],img_shape[1],-1))
temp=(origin_order_mixing_weights.reshape((img_shape[0],img_shape[1],-1,1))*origin_order_tetra_prime.reshape((1,1,-1,3))).sum(axis=2)
img_diff=temp.reshape(img_label_origin.shape)*255-img_label_origin*255
diff=square(img_diff.reshape((-1,3))).sum(axis=-1)
print ('max diff: ', sqrt(diff).max())
print ('median diff', median(sqrt(diff)))
print ('RMSE: ', sqrt(diff.sum()/diff.shape[0]))
if DEMO==False:
mixing_weights_filename=outprefix+'-'+str(len(origin_order_tetra_prime))+"-RGB_ASAP-using_Tan2016_triangulation_and_then_barycentric_coordinates-linear_mixing-weights.js"
with open(mixing_weights_filename,'wb') as myfile:
json.dump({'weights': origin_order_mixing_weights.tolist()}, myfile)
for i in range(origin_order_mixing_weights.shape[-1]):
mixing_weights_map_filename=outprefix+'-'+str(len(origin_order_tetra_prime))+"-RGB_ASAP-using_Tan2016_triangulation_and_then_barycentric_coordinates-linear_mixing-weights_map-%02d.png" % i
Image.fromarray((origin_order_mixing_weights[:,:,i]*255).round().clip(0,255).astype(uint8)).save(mixing_weights_map_filename)
return origin_order_mixing_weights