forked from jixunbo/LightMBN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
option.py
141 lines (121 loc) · 7.25 KB
/
option.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import argparse
parser = argparse.ArgumentParser(description='MGN')
parser.add_argument('--nThread', type=int, default=4,
help='number of threads for data loading')
parser.add_argument('--cpu', action='store_true',
help='if raise, use cpu only')
parser.add_argument('--nGPU', type=int, default=1, help='number of GPUs')
parser.add_argument("--config", type=str, default="", help='config path')
parser.add_argument("--datadir", type=str,
default="Market-1501-v15.09.15", help='dataset directory root')
parser.add_argument('--data_train', type=str,
default='Market1501', help='train dataset name')
parser.add_argument('--data_test', type=str,
default='Market1501', help='test dataset name')
parser.add_argument('--cuhk03_labeled', action='store_true',
help='if raise, use cuhk03-labeled dataset, otherwise cuhk03-detected dataset')
parser.add_argument("--epochs", type=int, default=80,
help='number of epochs to train')
parser.add_argument('--test_every', type=int, default=20,
help='do test per every N epochs')
parser.add_argument("--batchid", type=int, default=16, help='the batch for id')
parser.add_argument("--batchimage", type=int, default=4,
help='the batch of per id')
parser.add_argument("--batchtest", type=int, default=32,
help='input batch size for test')
parser.add_argument('--test_only', action='store_true',
help='set this option to test the model')
parser.add_argument('--sampler', type=str, default='True',
help='do use sampler in dataloader')
parser.add_argument('--model', default='LMBN_n', help='model name')
parser.add_argument('--loss', type=str, default='1*CrossEntropy+1*Triplet',
help='loss function configuration')
parser.add_argument("--if_labelsmooth", action='store_true',
help='Label Smoothing Trick')
parser.add_argument("--bnneck", action='store_true',
help='Apply bnneck before classifier, refer to BoT paper')
parser.add_argument("--feat_inference", type=str, default='after',
help='Apply bnneck before classifier, refer to BoT paper')
parser.add_argument("--drop_block", action='store_true',
help='Apply batch drop block')
parser.add_argument("--w_ratio", type=float, default=1.0,
help='w_ratio of batch drop block')
parser.add_argument("--h_ratio", type=float, default=0.3,
help='w_ratio of batch drop block')
parser.add_argument('--act', type=str, default='relu',
help='activation function')
parser.add_argument('--pool', type=str, default='avg', help='pool function')
parser.add_argument('--feats', type=int, default=512,
help='number of feature maps')
parser.add_argument('--height', type=int, default=384,
help='height of the input image')
parser.add_argument('--width', type=int, default=128,
help='width of the input image')
parser.add_argument('--num_classes', type=int, default=751, help='')
parser.add_argument('--T', type=int, default=1,
help='number of iterations of computing group loss')
parser.add_argument('--num_anchors', type=int, default=2,
help='number of iterations of computing group loss')
parser.add_argument("--lr", type=float, default=6e-4, help='learning rate')
parser.add_argument('--optimizer', default='ADAM', choices=('SGD', 'ADAM',
'NADAM', 'RMSprop'), help='optimizer to use (SGD | ADAM | NADAM | RMSprop)')
parser.add_argument('--momentum', type=float, default=0.9, help='SGD momentum')
parser.add_argument('--dampening', type=float, default=0, help='SGD dampening')
parser.add_argument('--nesterov', action='store_true', help='SGD nesterov')
parser.add_argument('--beta1', type=float, default=0.9, help='ADAM beta1')
parser.add_argument('--beta2', type=float, default=0.999, help='ADAM beta2')
parser.add_argument('--amsgrad', action='store_true', help='ADAM amsgrad')
parser.add_argument('--epsilon', type=float, default=1e-8,
help='ADAM epsilon for numerical stability')
parser.add_argument('--gamma', type=float, default=0.1,
help='learning rate decay factor for step decay')
parser.add_argument('--weight_decay', type=float,
default=5e-4, help='weight decay')
parser.add_argument('--decay_type', type=str, default='step',
help='learning rate decay type')
parser.add_argument('--lr_decay', type=int, default=60,
help='learning rate decay per N epochs')
parser.add_argument('--warmup', type=str, default='constant', choices=['constant', 'linear'],
help='warmup iteration, option: linear, constant')
parser.add_argument('--pcb_different_lr', type=str,
default='True', help='use different lr in pcb optimizer')
parser.add_argument("--cosine_annealing", action='store_true',
help='if raise, cosine_annealing')
parser.add_argument("--w_cosine_annealing", action='store_true',
help='if raise, warmup cosine_annealing')
parser.add_argument('--parts', type=int, default=6, help='parts of PCB model')
parser.add_argument("--margin", type=float, default=1.2, help='')
parser.add_argument("--re_rank", action='store_true',
help='if raise, use re-ranking')
parser.add_argument("--cutout", action='store_true',
help='if raise, use cutout augmentation')
parser.add_argument("--random_erasing", action='store_true', help='')
parser.add_argument("--probability", type=float, default=0.5, help='')
parser.add_argument('--save', type=str, default='test',
help='folder name to save')
parser.add_argument('--load', type=str, default='', help='folder name to load')
parser.add_argument('--pre_train', type=str, default='',
help='pre-trained model path')
parser.add_argument("--activation_map", action='store_true',
help='if raise, return feature activation map')
# For Neptune
parser.add_argument('--nep_token', '-n', type=str,
default='', help='neptune_api_token')
parser.add_argument('--nep_id', type=str,
default='', help='neptune_experiment_id')
parser.add_argument('--nep_name', type=str,
default='x.ji/mcmp', help='neptune_project_name')
parser.add_argument('--reset', action='store_true', help='reset the training')
# parser.add_argument("--savedir", type=str, default='saved_models', help='directory name to save')
# parser.add_argument("--outdir", type=str, default='out', help='')
# parser.add_argument("--resume", action='store_true', help='whether resume training from specific checkpoint')
# parser.add_argument('--save_models', action='store_true', help='save all intermediate models')
# for wandb
parser.add_argument('--wandb', action='store_true', help='use wandb')
parser.add_argument('--wandb_name', type=str, default='', help='wandb project name')
args = parser.parse_args()
for arg in vars(args):
if vars(args)[arg] == 'True':
vars(args)[arg] = True
elif vars(args)[arg] == 'False':
vars(args)[arg] = False