-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAttendance.py
79 lines (65 loc) · 2.81 KB
/
Attendance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# Attendance marker
import numpy as np
import cv2
import face_recognition
import os
from datetime import datetime
import pickle
# Loading the students images encodings that we processed before
# Note: If any changes made in the "Images" folder, re-run the encodings program
# before running this program.
classNames, encodeListKnown = pickle.load(open("data.p", "rb"))
Attendees = []
try:
with open('Attendance.csv', 'r+') as f:
myDataList = f.readlines()
for line in myDataList:
entry = line.split(',')
Attendees.append(entry[0])
except:
with open('Attendance.csv', 'w+') as f:
f.write('Name,Time')
# Create already a "Attendance.csv" file in the same folder
# When a student comes in front the camera, it recognizes their face
# and saves the student name and time of arrival.
# If student already saved in the csv file, then it not save his name agian
# and also it wont update the arrival time.
def markAttendance(name):
if name not in Attendees:
Attendees.append(name)
with open('Attendance.csv', 'a') as f:
now = datetime.now()
dtString = now.strftime('%H:%M:%S')
f.write(f'\n{name},{dtString}')
# opening the camera
cap = cv2.VideoCapture(0)
# camera runs foreover and captures students faces until "q" is pressed
while True:
success, img = cap.read()
# processing the image
# making the image four times smaller, to speed up the process
imgS = cv2.resize(img, (0,0), None, 0.25, 0.25)
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
facesCurFrame = face_recognition.face_locations(imgS)
encodesCurFrame = face_recognition.face_encodings(imgS)
# comparing the current faces on camera to the encodings we already have
for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
matches = face_recognition.compare_faces(encodeListKnown, encodeFace)
faceDis = face_recognition.face_distance(encodeListKnown, encodeFace)
matchIndex = np.argmin(faceDis)
# getting face coordinates and drawing a box around it
if matches[matchIndex]:
name = classNames[matchIndex].upper()
markAttendance(name)
# coordinates of the person face
y1, x2, y2, x1 = faceLoc
y1, x2, y2, x1 = y1*4, x2*4, y2*4, x1*4
# draws a rectangle around the face
cv2.rectangle(img, (x1,y1), (x2,y2), (0,255,0), 2)
cv2.rectangle(img, (x1, y2-35), (x2, y2), (0,255,0), cv2.FILLED)
cv2.putText(img, f'{name}', (x1+6, y2-6), cv2.FONT_HERSHEY_COMPLEX, 0.75, (255,255,255), 2)
cv2.imshow("Output", img)
# loop breaking condition, enter "q" to exit, this will turn off the camera
if cv2.waitKey(1) & 0xFF==ord('q'):
cap.release()
break