generated from ashleve/lightning-hydra-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_multi-gpu.py
45 lines (32 loc) · 1.46 KB
/
run_multi-gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
"""
python "/media/data/jacob/GitHub/lightning-hydra-classifiers/run_multi-gpu.py"
python "/media/data/jacob/GitHub/lightning-hydra-classifiers/run_basic.py" +experiment=1_pnas_exp_example_full
"""
import dotenv
import hydra
from omegaconf import DictConfig, OmegaConf
# load environment variables from `.env` file if it exists
# recursively searches for `.env` in all folders starting from work dir
dotenv.load_dotenv(override=True)
@hydra.main(config_path="configs/", config_name="multi-gpu")
# @hydra.main(config_path="configs/", config_name="PNAS_config") # ="config")
def main(config: DictConfig):
# Imports should be nested inside @hydra.main to optimize tab completion
# Read more here: https://github.com/facebookresearch/hydra/issues/934
from lightning_hydra_classifiers.train_multi_gpu import train
from lightning_hydra_classifiers.utils import template_utils
# A couple of optional utilities:
# - disabling python warnings
# - easier access to debug mode
# - forcing debug friendly configuration
# - forcing multi-gpu friendly configuration
# You can safely get rid of this line if you don't want those
template_utils.extras(config)
OmegaConf.set_struct(config, False)
# Pretty print config using Rich library
if config.get("print_config"):
template_utils.print_config(config, resolve=True)
# return run_full_tuned_experiment(config)
return train(config)
if __name__ == "__main__":
main()