-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathunsupervised_sparse.py
178 lines (154 loc) · 5.53 KB
/
unsupervised_sparse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Copyright 2020 JD.com, Inc. Galileo Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
'''
Galileo训练unsupervised graphsage模型的简单用法
'''
import os
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import galileo as g
import galileo.pytorch as gp
class SAGEEncode(nn.Module):
def __init__(
self,
input_dim,
output_dim,
dense_feature_dims,
fanouts,
aggregator_name='mean',
dropout_rate=0.0,
):
super().__init__()
self.feature_combiner = gp.FeatureCombiner(
dense_feature_dims=dense_feature_dims)
self.layer0 = gp.SAGESparseLayer(input_dim,
output_dim,
aggregator_name,
activation=F.relu,
dropout_rate=dropout_rate)
self.layer1 = gp.SAGESparseLayer(output_dim,
output_dim,
aggregator_name,
dropout_rate=dropout_rate)
self.relation = gp.RelationTransform(fanouts).transform
def forward(self, inputs):
feature = self.feature_combiner(inputs)
relation_graph = self.relation(inputs)
relation_graph['feature'] = feature
feature = self.layer0(relation_graph)
relation_graph['feature'] = feature
feature = self.layer1(relation_graph)
ti = relation_graph['target_indices']
output = feature.index_select(0, ti.flatten())
return output.reshape(ti.shape + (feature.shape[-1], ))
class UnsupSAGE(gp.Unsupervised):
def __init__(
self,
input_dim,
output_dim,
dense_feature_dims,
fanouts,
aggregator_name='mean',
dropout_rate=0.0,
):
super().__init__()
self.encoder = SAGEEncode(
input_dim,
output_dim,
dense_feature_dims,
fanouts,
aggregator_name,
dropout_rate,
)
def target_encoder(self, inputs):
return self.encoder(inputs)
def context_encoder(self, inputs):
return self.encoder(inputs)
class Inputs(g.BaseInputs):
def __init__(self, **kwargs):
super().__init__(config=kwargs)
self.transform = gp.MultiHopFeatureNegSparseTransform(
**self.config).transform
def train_data(self):
return gp.dataset_pipeline(gp.VertexDataset, self.transform,
**self.config)
def evaluate_data(self):
test_ids = g.get_test_vertex_ids(
data_source_name=self.config['data_source_name'])
return gp.dataset_pipeline(
lambda **kwargs: gp.TensorDataset(test_ids, **kwargs),
self.transform, **self.config)
def predict_data(self):
def predict_transform(inputs):
inputs = torch.tensor(inputs)
outputs = self.transform(inputs)
outputs['target_ids'] = inputs
return outputs
return gp.dataset_pipeline(
lambda **kwargs: gp.RangeDataset(
start=0, end=kwargs['max_id'], **kwargs), predict_transform,
**self.config)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--max_id', default=2708, type=int, help='max node id')
parser.add_argument('--gpu', default='0', type=str, help='gpu devices')
parser.add_argument('--model_dir',
default='.models/unsup_sage_pt',
type=str,
help='model dir')
parser = g.define_service_args(parser)
args, _ = parser.parse_known_args()
if args.data_source_name is None:
args.data_source_name = 'cora'
g.start_service_from_args(args)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
sage = UnsupSAGE(
input_dim=1433,
output_dim=64,
dense_feature_dims=[1433],
fanouts=[5, 5],
)
inputs = Inputs(batch_size=64,
vertex_type=[0],
metapath=[[0], [0]],
fanouts=[5, 5],
negative_num=5,
dense_feature_names=['feature'],
dense_feature_dims=[1433],
max_id=args.max_id,
data_source_name=args.data_source_name)
is_multi_gpu = len(args.gpu.split(',')) > 1
trainer = gp.Trainer(
sage,
inputs,
multiprocessing_distributed=is_multi_gpu,
zk_server=args.zk_server,
zk_path=args.zk_path,
)
model_config = dict(
model_dir=args.model_dir,
num_epochs=10,
save_checkpoint_epochs=5,
log_steps=100,
optimizer='adam',
learning_rate=0.01,
)
trainer.train(**model_config)
trainer.evaluate(**model_config)
trainer.predict(**model_config)
if __name__ == "__main__":
main()