-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain_eval.py
397 lines (348 loc) · 16.8 KB
/
train_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import os
import sys
import time
import glob
import logging
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
from utils import AverageMeter, EMA, Logger, accuracy, gen_idxs_dict
from utils import save_checkpoint, create_exp_dir, set_seed
from utils import RandomErasing, IdentitySampler, WarmupMultiStepLR
from utils import eval_sysu, eval_regdb
from datasets import process_query_sysu, process_gallery_sysu, process_test_regdb
from datasets import SYSUData, RegDBData, TestData
from losses import TripletLoss, CrossEntropyLabelSmooth, SP, CMMD
from models import TwoStreamSwitchBNOp
parser = argparse.ArgumentParser(description='Cross-Modality ReID CM-NAS Eval')
# various path
parser.add_argument('--data_root', type=str, required=True, help='dataset root path')
parser.add_argument('--dataset', type=str, required=True, help='dataset name: regdb or sysu')
parser.add_argument('--save', type=str, default='./checkpoints/', help='model and log saving path')
parser.add_argument('--config_path', type=str, required=True, help='path of searched config')
parser.add_argument('--resume', type=str, default='', help='resume from checkpoint')
parser.add_argument('--note', type=str, default='try', help='note for this run')
# training hyper-parameters
parser.add_argument('--print_freq', type=float, default=20, help='print iteration frequency')
parser.add_argument('--test_freq', type=float, default=2, help='test and save epoch frequency')
parser.add_argument('--workers', type=int, default=4, help='number of workers to load dataset')
parser.add_argument('--epochs', type=int, default=120, help='num of total training epochs')
parser.add_argument('--steps', type=str, default='[40, 70]', help='steps for lr decreasing')
parser.add_argument('--gamma', type=float, default=0.1, help='scale factor for lr decreasing')
parser.add_argument('--warmup_epochs', type=int, default=10, help='warmup epochs')
parser.add_argument('--warmup_factor', type=float, default=0.01, help='warmup factor')
parser.add_argument('--batch_size', type=int, default=64, help='training batch size')
parser.add_argument('--test_batch', type=int, default=128, help='testing batch size')
parser.add_argument('--num_pos', type=int, default=4, help='num of pos per identity in each modality')
parser.add_argument('--lr', type=float, default=0.01, help='init learning rate')
parser.add_argument('--optim', type=str, default='adam', help='optimizer')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum for sgd')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam')
parser.add_argument('--beta2', type=float, default=0.999, help='beta2 for adam')
parser.add_argument('--weight_decay', type=float, default=5e-4, help='weight decay for sgd or adam')
parser.add_argument('--img_w', type=int, default=128, help='img width')
parser.add_argument('--img_h', type=int, default=256, help='img height')
parser.add_argument('--label_smooth', type=float, default=0.0, help='label smoothing')
parser.add_argument('--last_stride', type=int, default=1, help='last stride for resnet')
parser.add_argument('--dropout_rate', type=float, default=0.0, help='dropout rate for classifier')
parser.add_argument('--ema_decay', type=float, default=0.997, help='whether to use EMA')
parser.add_argument('--sp_lambda', type=float, default=5.0, help='lambda for SP loss')
parser.add_argument('--cmmd_lambda', type=float, default=0.05, help='lambda for CMMD loss')
parser.add_argument('--seed', type=int, default=2)
parser.add_argument('--cuda', type=int, default=1)
# hyper parameters
parser.add_argument('--margin', type=float, default=0.4, help='triplet margin')
parser.add_argument('--triplet_feat_norm', type=str, default='no',
help='whether normalizing features in triplet loss')
parser.add_argument('--test_feat_norm', type=str, default='yes',
help='whether normalizing features in testing')
parser.add_argument('--mode', default='all', type=str, help='all or indoor for sysu')
parser.add_argument('--trial', default=1, type=int, help='trial (only for RegDB dataset)')
args, unparsed = parser.parse_known_args()
args.save = os.path.join(args.save, args.note)
create_exp_dir(args.save, scripts_to_save=glob.glob('*.py') + glob.glob('*.sh'))
sys.stdout = Logger(log_path=os.path.join(args.save, 'log.txt'))
def main():
# set_seed(args.seed, cuda=args.cuda)
if args.cuda:
cudnn.enabled = True
cudnn.benchmark = True
print("args = {}".format(args))
print("unparsed_args = {}".format(unparsed))
# define transforms
mean=[0.485, 0.456, 0.406]
std=[0.229, 0.224, 0.225]
train_transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Pad(10),
transforms.RandomCrop((args.img_h,args.img_w)),
transforms.RandomHorizontalFlip(p=0.5),
transforms.ToTensor(),
transforms.Normalize(mean=mean,std=std),
RandomErasing(p=0.5, mean=mean)
])
test_transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((args.img_h,args.img_w)),
transforms.ToTensor(),
transforms.Normalize(mean=mean,std=std),
])
# define dataset
end = time.time()
if args.dataset == 'sysu':
# training set
trainset = SYSUData(args.data_root, transform=train_transform)
# generate the idx of each person identity
visible_idxs_dict, thermal_idxs_dict = gen_idxs_dict(trainset.train_visible_label, trainset.train_thermal_label)
# testing set
gallery_img, gallery_label, gallery_camid = process_gallery_sysu(args.data_root, mode=args.mode, shot=1, trial=0)
query_img, query_label, query_camid = process_query_sysu(args.data_root, mode=args.mode)
args.test_mode = [1, 2] # thermal to visible
elif args.dataset == 'regdb':
# training set
trainset = RegDBData(args.data_root, args.trial, transform=train_transform, img_size=(args.img_w,args.img_h))
# generate the idx of each person identity
visible_idxs_dict, thermal_idxs_dict = gen_idxs_dict(trainset.train_visible_label, trainset.train_thermal_label)
# testing set
gallery_img, gallery_label = process_test_regdb(args.data_root, trial=args.trial, modality='thermal')
query_img, query_label = process_test_regdb(args.data_root, trial=args.trial, modality='visible')
gallery_camid, query_camid = None, None
args.test_mode = [2, 1] # visible to thermal
else:
raise Exception('invalid dataset name......')
galleryset = TestData(gallery_img, gallery_label, transform=test_transform, img_size=(args.img_w,args.img_h))
queryset = TestData(query_img, query_label, transform=test_transform, img_size=(args.img_w,args.img_h))
# testing data loader
gallery_loader = data.DataLoader(galleryset, batch_size=args.test_batch, shuffle=False, num_workers=args.workers)
query_loader = data.DataLoader(queryset, batch_size=args.test_batch, shuffle=False, num_workers=args.workers)
num_classes = len(np.unique(trainset.train_visible_label))
nquery = len(query_label)
ngallery = len(gallery_label)
print('Dataset {} statistics:'.format(args.dataset))
print(' ------------------------------')
print(' subset | # ids | # images')
print(' ------------------------------')
print(' visible | {:5d} | {:8d}'.format(num_classes, len(trainset.train_visible_label)))
print(' thermal | {:5d} | {:8d}'.format(num_classes, len(trainset.train_thermal_label)))
print(' ------------------------------')
print(' query | {:5d} | {:8d}'.format(len(np.unique(query_label)), nquery))
print(' gallery | {:5d} | {:8d}'.format(len(np.unique(gallery_label)), ngallery))
print(' ------------------------------')
print('Data Loading Time: {}s'.format(int(round(time.time()-end))))
print('==> Building model......')
config = open(args.config_path).readline()
config = [int(x) for x in config.strip().split(' ')]
with open(os.path.join(args.save, 'netowrk.cfg'), 'w') as f:
f.write(' '.join([str(x) for x in config]))
model = TwoStreamSwitchBNOp(num_classes, config, pretrained=True, last_stride=args.last_stride, dropout_rate=args.dropout_rate)
if args.cuda:
model = torch.nn.DataParallel(model).cuda()
# exponential moving average
if args.ema_decay > 0.0:
ema = EMA(model, args.ema_decay)
ema.register()
else:
ema = None
# for resume
print('==> Done......')
# initialize optimizer
ignored_params = list(map(id, model.module.bnneck.parameters())) + \
list(map(id, model.module.classifier.parameters()))
base_params = filter(lambda p: id(p) not in ignored_params, model.module.parameters())
if args.optim == 'sgd':
optimizer = torch.optim.SGD([
{'params': base_params, 'lr': 0.1*args.lr},
{'params': model.module.bnneck.parameters(), 'lr': args.lr},
{'params': model.module.classifier.parameters(), 'lr': args.lr}],
weight_decay=args.weight_decay, momentum=args.momentum, nesterov=True)
elif args.optim == 'adam':
optimizer = torch.optim.Adam([
{'params': base_params, 'lr': 0.1*args.lr},
{'params': model.module.bnneck.parameters(), 'lr': args.lr},
{'params': model.module.classifier.parameters(), 'lr': args.lr}],
weight_decay=args.weight_decay, betas=(args.beta1, args.beta2))
scheduler = WarmupMultiStepLR(optimizer, eval(args.steps), args.gamma, args.warmup_epochs, args.warmup_factor)
# define loss functions
if args.label_smooth > 0:
criterionCE = CrossEntropyLabelSmooth(num_classes, args.label_smooth)
else:
criterionCE = nn.CrossEntropyLoss()
criterionTri = TripletLoss(margin=args.margin, feat_norm=args.triplet_feat_norm)
criterionSP = SP()
criterionCMMD = CMMD(args.num_pos)
if args.cuda:
criterionCE = criterionCE.cuda()
criterionTri = criterionTri.cuda()
criterionSP = criterionSP.cuda()
criterionCMMD = criterionCMMD.cuda()
print('==> Start Training......')
criterions = {'criterionCE':criterionCE, 'criterionTri':criterionTri,
'criterionSP':criterionSP, 'criterionCMMD':criterionCMMD}
gallery = {'gallery_loader':gallery_loader, 'gallery_label':gallery_label, 'gallery_camid':gallery_camid}
query = {'query_loader':query_loader, 'query_label':query_label, 'query_camid':query_camid}
for epoch in range(args.epochs):
# prepare training data loader
sampler = IdentitySampler(trainset.train_visible_label, trainset.train_thermal_label,
visible_idxs_dict, thermal_idxs_dict, args.num_pos, args.batch_size)
trainset.vIndex = sampler.index_visible
trainset.tIndex = sampler.index_thermal
train_loader = data.DataLoader(trainset, batch_size=args.batch_size,
sampler=sampler, num_workers=args.workers)
# scheduler.step()
current_lr = scheduler.get_lr()[-1]
print('Epoch: {} lr: {:.6f}'.format(epoch+1, current_lr))
# train one eopch
epoch_start_time = time.time()
train(train_loader, model, ema, optimizer, criterions, epoch)
epoch_duration = time.time() - epoch_start_time
print('Epoch time: {}s'.format(int(round(epoch_duration))))
# testing
if (epoch + 1) % args.test_freq == 0:
print('Testing the model......')
test_start_time = time.time()
test(gallery, query, model, epoch)
test_duration = time.time() - test_start_time
print('Test time: {}s'.format(int(round(test_duration))))
print('Saving model......')
save_checkpoint({
'epoch': epoch+1,
'model': model.state_dict(),
'ema': ema.state_dict() if ema is not None else None,
'optimizer': optimizer.state_dict(),
}, args.save, epoch+1)
if ema is not None:
model.load_state_dict(ema.state_dict())
scheduler.step()
def train(train_loader, model, ema, optimizer, criterions, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses_ce = AverageMeter()
losses_tri = AverageMeter()
losses_sp = AverageMeter()
losses_cmmd = AverageMeter()
acc = AverageMeter()
criterionCE = criterions['criterionCE']
criterionTri = criterions['criterionTri']
criterionSP = criterions['criterionSP']
criterionCMMD = criterions['criterionCMMD']
model.train()
end = time.time()
for idx, (img_v, img_t, target_v, target_t) in enumerate(train_loader, start=1):
data_time.update(time.time() - end)
img = torch.cat((img_v, img_t), 0)
target = torch.cat((target_v, target_t))
if args.cuda:
img_v = img_v.cuda(non_blocking=True)
img_t = img_t.cuda(non_blocking=True)
img = img.cuda(non_blocking=True)
target_v = target_v.cuda(non_blocking=True)
target_t = target_t.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
global_feat, feat, logit = model(img_v, img_t, mode=0)
feat_v, feat_t = torch.split(feat, img.size(0)//2, dim=0)
global_feat_v, global_feat_t = torch.split(global_feat, img.size(0)//2, dim=0)
loss_ce = criterionCE(logit, target)
loss_tri = (criterionTri(global_feat_v, global_feat_v, target_v) +
criterionTri(global_feat_t, global_feat_t, target_t) +
criterionTri(global_feat_v, global_feat_t, target_t) +
criterionTri(global_feat_t, global_feat_v, target_v)) / 4.0
loss_sp = criterionSP(feat_v, feat_t) * args.sp_lambda
loss_cmmd = criterionCMMD(feat_v, feat_t) * args.cmmd_lambda
loss = loss_ce + loss_tri + loss_sp + loss_cmmd
prec1, = accuracy(logit, target, topk=(1,))
losses_ce.update(loss_ce.item(), img.size(0))
losses_tri.update(loss_tri.item(), img.size(0))
losses_sp.update(loss_sp.item(), img.size(0))
losses_cmmd.update(loss_cmmd.item(), img.size(0))
acc.update(prec1.item(), img.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
if ema is not None: ema.update()
batch_time.update(time.time() - end)
end = time.time()
if idx % args.print_freq == 0:
print('Epoch[{0}]:[{1:03}/{2:03}] '
'Time:{batch_time.val:.4f} '
'Data:{data_time.val:.4f} '
'CE:{losses_ce.val:.4f}({losses_ce.avg:.4f}) '
'Tri:{losses_tri.val:.4f}({losses_tri.avg:.4f}) '
'SP:{losses_sp.val:.4f}({losses_sp.avg:.4f}) '
'CMMD:{losses_cmmd.val:.4f}({losses_cmmd.avg:.4f}) '
'Acc:{acc.val:.2f}({acc.avg:.2f})'.format(
epoch+1, idx, len(train_loader), batch_time=batch_time, data_time=data_time,
losses_ce=losses_ce, losses_tri=losses_tri, losses_sp=losses_sp, losses_cmmd=losses_cmmd, acc=acc))
def test(gallery, query, model, epoch):
gallery_loader = gallery['gallery_loader']
gallery_label = gallery['gallery_label']
gallery_camid = gallery['gallery_camid']
ngallery = len(gallery_label)
query_loader = query['query_loader']
query_label = query['query_label']
query_camid = query['query_camid']
nquery = len(query_label)
model.eval()
print('Extracting gallery features...')
start_time = time.time()
ptr = 0
gallery_feats = np.zeros((ngallery, model.module.feat_dim))
gallery_global_feats = np.zeros((ngallery, model.module.feat_dim))
with torch.no_grad():
for idx, (img, _) in enumerate(gallery_loader):
if args.cuda:
img = img.cuda(non_blocking=True)
global_feat, feat = model(img, img, mode=args.test_mode[0])
if args.test_feat_norm == 'yes':
global_feat = F.normalize(global_feat, p=2, dim=1)
feat = F.normalize(feat, p=2, dim=1)
batch_num = img.size(0)
gallery_feats[ptr:ptr+batch_num,:] = feat.cpu().numpy()
gallery_global_feats[ptr:ptr+batch_num,:] = global_feat.cpu().numpy()
ptr = ptr + batch_num
duration = time.time() - start_time
print('Extracting time: {}s'.format(int(round(duration))))
print('Extracting query features...')
start_time = time.time()
ptr = 0
query_feats = np.zeros((nquery, model.module.feat_dim))
query_global_feats = np.zeros((nquery, model.module.feat_dim))
with torch.no_grad():
for idx, (img, _) in enumerate(query_loader):
if args.cuda:
img = img.cuda(non_blocking=True)
global_feat, feat = model(img, img, mode=args.test_mode[1])
if args.test_feat_norm == 'yes':
global_feat = F.normalize(global_feat, p=2, dim=1)
feat = F.normalize(feat, p=2, dim=1)
batch_num = img.size(0)
query_feats[ptr:ptr+batch_num,:] = feat.cpu().numpy()
query_global_feats[ptr:ptr+batch_num,:] = global_feat.cpu().numpy()
ptr = ptr + batch_num
duration = time.time() - start_time
print('Extracting time: {}s'.format(int(round(duration))))
# compute the similarity
distmat = np.matmul(query_feats, np.transpose(gallery_feats))
distmat_global = np.matmul(query_global_feats, np.transpose(gallery_global_feats))
# evaluation
if args.dataset == 'sysu':
cmc, mAP = eval_sysu(-distmat, query_label, gallery_label, query_camid, gallery_camid)
cmc_global, mAP_global = eval_sysu(-distmat_global, query_label, gallery_label, query_camid, gallery_camid)
elif args.dataset == 'regdb':
cmc, mAP = eval_regdb(-distmat, query_label, gallery_label)
cmc_global, mAP_global = eval_regdb(-distmat_global, query_label, gallery_label)
else:
raise Exception('invalid dataset name......')
print('Results - Epoch {}:'.format(epoch+1))
print('mAP: {:.2%}'.format(mAP))
for r in [1, 5, 10, 20]:
print("CMC curve, Rank-{:<3}:{:.2%}".format(r, cmc[r-1]))
print('mAP_global: {:.2%}'.format(mAP_global))
for r in [1, 5, 10, 20]:
print("cmc_global curve, Rank-{:<3}:{:.2%}".format(r, cmc_global[r-1]))
if __name__ == '__main__':
main()