-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtest.py
234 lines (200 loc) · 9.61 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
import time
import argparse
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
from datasets import process_query_sysu, process_gallery_sysu, process_test_regdb
from datasets import TestData
from models import Baseline, TwoStreamSwitchBNOp
from utils import eval_sysu, eval_regdb
from utils import EMA
parser = argparse.ArgumentParser(description='Cross-Modality ReID Testing')
# various path
parser.add_argument('--data_root', type=str, required=True, help='dataset root path')
parser.add_argument('--dataset', type=str, required=True, help='dataset name: regdb or sysu')
parser.add_argument('--model_type', type=str, required=True, help='model type for testing')
parser.add_argument('--config_path', type=str, default='', help='path of searched config for TwoStreamSwitchBN')
parser.add_argument('--weights', type=str, required=True, help='model weights for testing')
# training hyper-parameters
parser.add_argument('--test_batch', type=int, default=128, help='testing batch size')
parser.add_argument('--workers', type=int, default=4, help='number of workers to load dataset')
parser.add_argument('--img_w', type=int, default=128, help='img width')
parser.add_argument('--img_h', type=int, default=256, help='img height')
parser.add_argument('--last_stride', type=int, default=1, help='last stride for resnet')
parser.add_argument('--cuda', type=int, default=1)
parser.add_argument('--ema', action='store_true', default=False, help='whether to use EMA')
# hyper parameters
parser.add_argument('--test_feat_norm', type=str, default='yes',
help='whether normalizing features in testing')
parser.add_argument('--mode', default='all', type=str, help='all or indoor for sysu')
parser.add_argument('--shot', default=1, type=int, help='single or multi shot for sysu')
parser.add_argument('--trial', default=1, type=int, help='trial (only for RegDB dataset)')
parser.add_argument('--tvsearch', action='store_true', help='whether thermal to visible search on RegDB')
def extract_gall_feat(gallery_loader):
model.eval()
# print('Extracting gallery features...')
start_time = time.time()
ptr = 0
gallery_feats = np.zeros((ngallery, model.module.feat_dim))
gallery_global_feats = np.zeros((ngallery, model.module.feat_dim))
with torch.no_grad():
for idx, (img, _) in enumerate(gallery_loader):
if args.cuda:
img = img.cuda(non_blocking=True)
global_feat, feat = model(img, img, mode=test_mode[0])
if args.test_feat_norm == 'yes':
global_feat = F.normalize(global_feat, p=2, dim=1)
feat = F.normalize(feat, p=2, dim=1)
batch_num = img.size(0)
gallery_feats[ptr:ptr+batch_num,:] = feat.cpu().numpy()
gallery_global_feats[ptr:ptr+batch_num,:] = global_feat.cpu().numpy()
ptr = ptr + batch_num
duration = time.time() - start_time
# print('Extracting time: {}s'.format(int(round(duration))))
return gallery_feats, gallery_global_feats
def extract_query_feat(query_loader):
model.eval()
# print('Extracting query features...')
start_time = time.time()
ptr = 0
query_feats = np.zeros((nquery, model.module.feat_dim))
query_global_feats = np.zeros((nquery, model.module.feat_dim))
with torch.no_grad():
for idx, (img, _) in enumerate(query_loader):
if args.cuda:
img = img.cuda(non_blocking=True)
global_feat, feat = model(img, img, mode=test_mode[1])
if args.test_feat_norm == 'yes':
global_feat = F.normalize(global_feat, p=2, dim=1)
feat = F.normalize(feat, p=2, dim=1)
batch_num = img.size(0)
query_feats[ptr:ptr+batch_num,:] = feat.cpu().numpy()
query_global_feats[ptr:ptr+batch_num,:] = global_feat.cpu().numpy()
ptr = ptr + batch_num
duration = time.time() - start_time
# print('Extracting time: {}s'.format(int(round(duration))))
return query_feats, query_global_feats
args, unparsed = parser.parse_known_args()
if args.dataset == 'sysu':
num_classes = 395
test_mode = [1, 2]
elif args.dataset == 'regdb':
num_classes = 206
test_mode = [2, 1]
else:
raise Exception('Invalid dataset name......')
if args.cuda:
cudnn.enabled = True
cudnn.benchmark = True
print('==> Building model......')
if args.model_type == 'baseline':
model = Baseline(num_classes, pretrained=False, last_stride=args.last_stride, dropout_rate=0.0)
elif args.model_type == 'cm-nas':
config = open(args.config_path).readline()
config = [int(x) for x in config.strip().split(' ')]
model = TwoStreamSwitchBNOp(num_classes, config, pretrained=False, last_stride=args.last_stride, dropout_rate=0.0)
else:
raise Exception('Invalid model type......')
if args.cuda:
model = torch.nn.DataParallel(model).cuda()
print('==> Loading weights from checkpoint......')
if os.path.isfile(args.weights):
checkpoint = torch.load(args.weights)
if args.ema:
model.load_state_dict(checkpoint['ema'])
else:
model.load_state_dict(checkpoint['model'])
else:
print('==> No checkpoint found at {}'.format(args.weights))
print('==> Testing......')
# define transforms
mean=[0.485, 0.456, 0.406]
std=[0.229, 0.224, 0.225]
test_transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((args.img_h,args.img_w)),
transforms.ToTensor(),
transforms.Normalize(mean=mean,std=std),
])
end = time.time()
if args.dataset == 'sysu':
query_img, query_label, query_camid = process_query_sysu(args.data_root, mode=args.mode)
queryset = TestData(query_img, query_label, transform=test_transform, img_size=(args.img_w,args.img_h))
query_loader = data.DataLoader(queryset, batch_size=args.test_batch, shuffle=False, num_workers=args.workers)
nquery = len(query_label)
query_feats, query_global_feats = extract_query_feat(query_loader)
for trial in tqdm(range(10)):
gallery_img, gallery_label, gallery_camid = process_gallery_sysu(args.data_root, args.mode, args.shot, trial)
galleryset = TestData(gallery_img, gallery_label, transform=test_transform, img_size=(args.img_w,args.img_h))
gallery_loader = data.DataLoader(galleryset, batch_size=args.test_batch, shuffle=False, num_workers=args.workers)
ngallery = len(gallery_label)
gallery_feats, gallery_global_feats = extract_gall_feat(gallery_loader)
# compute the similarity
distmat = np.matmul(query_feats, np.transpose(gallery_feats))
distmat_global = np.matmul(query_global_feats, np.transpose(gallery_global_feats))
# evaluation
cmc, mAP = eval_sysu(-distmat, query_label, gallery_label, query_camid, gallery_camid)
cmc_global, mAP_global = eval_sysu(-distmat_global, query_label, gallery_label, query_camid, gallery_camid)
if trial == 0:
all_cmc = cmc
all_mAP = mAP
all_cmc_global = cmc_global
all_mAP_global = mAP_global
else:
all_cmc += cmc
all_mAP += mAP
all_cmc_global += cmc_global
all_mAP_global += mAP_global
# print('Test Trial: {}, Shot = {}'.format(trial, args.shot))
# print('mAP: {:.2%} | Rank-1: {:.2%} | Rank-5: {:.2%} | Rank-10: {:.2%} | Rank-20: {:.2%}'.format(
# mAP, cmc[0], cmc[4], cmc[9], cmc[19]))
# print('mAP_global: {:.2%} | Rank-1: {:.2%} | Rank-5: {:.2%} | Rank-10: {:.2%} | Rank-20: {:.2%}'.format(
# mAP_global, cmc_global[0], cmc_global[4], cmc_global[9], cmc_global[19]))
cmc = all_cmc / 10
mAP = all_mAP / 10
cmc_global = all_cmc_global / 10
mAP_global = all_mAP_global / 10
print('All Average (Shot = {}):'.format(args.shot))
print('mAP: {:.2%} | Rank-1: {:.2%} | Rank-5: {:.2%} | Rank-10: {:.2%} | Rank-20: {:.2%}'.format(
mAP, cmc[0], cmc[4], cmc[9], cmc[19]))
print('mAP_global: {:.2%} | Rank-1: {:.2%} | Rank-5: {:.2%} | Rank-10: {:.2%} | Rank-20: {:.2%}'.format(
mAP_global, cmc_global[0], cmc_global[4], cmc_global[9], cmc_global[19]))
elif args.dataset == 'regdb':
gallery_img, gallery_label = process_test_regdb(args.data_root, trial=args.trial, modality='thermal')
query_img, query_label = process_test_regdb(args.data_root, trial=args.trial, modality='visible')
galleryset = TestData(gallery_img, gallery_label, transform=test_transform, img_size=(args.img_w,args.img_h))
queryset = TestData(query_img, query_label, transform=test_transform, img_size=(args.img_w,args.img_h))
gallery_loader = data.DataLoader(galleryset, batch_size=args.test_batch, shuffle=False, num_workers=args.workers)
query_loader = data.DataLoader(queryset, batch_size=args.test_batch, shuffle=False, num_workers=args.workers)
ngallery = len(gallery_label)
nquery = len(query_label)
gallery_feats, gallery_global_feats = extract_gall_feat(gallery_loader)
query_feats, query_global_feats = extract_query_feat(query_loader)
if args.tvsearch:
# compute the similarity
distmat = np.matmul(gallery_feats, np.transpose(query_feats))
distmat_global = np.matmul(gallery_global_feats, np.transpose(query_global_feats))
# evaluation
cmc, mAP = eval_regdb(-distmat, gallery_label, query_label)
cmc_global, mAP_global = eval_regdb(-distmat_global, gallery_label, query_label)
else:
# compute the similarity
distmat = np.matmul(query_feats, np.transpose(gallery_feats))
distmat_global = np.matmul(query_global_feats, np.transpose(gallery_global_feats))
# evaluation
cmc, mAP = eval_regdb(-distmat, query_label, gallery_label)
cmc_global, mAP_global = eval_regdb(-distmat_global, query_label, gallery_label)
if args.tvsearch:
print('Test Trial: {}, Thermal to Visible'.format(args.trial))
else:
print('Test Trial: {}, Visible to Thermal'.format(args.trial))
print('mAP: {:.2%} | Rank-1: {:.2%} | Rank-5: {:.2%} | Rank-10: {:.2%} | Rank-20: {:.2%}'.format(
mAP, cmc[0], cmc[4], cmc[9], cmc[19]))
print('mAP_global: {:.2%} | Rank-1: {:.2%} | Rank-5: {:.2%} | Rank-10: {:.2%} | Rank-20: {:.2%}'.format(
mAP_global, cmc_global[0], cmc_global[4], cmc_global[9], cmc_global[19]))