-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbrms_within_chain_parallelization.R
63 lines (50 loc) · 1.52 KB
/
brms_within_chain_parallelization.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
##################################################
# Imports
##################################################
library(tidyverse)
library(brms)
##################################################
# Main
##################################################
# See https://cran.r-project.org/web/packages/brms/vignettes/brms_threading.html#fake-data-simulation
set.seed(54647)
# number of observations
N <- 1E4
# number of group levels
G <- round(N / 10)
# number of predictors
P <- 3
# regression coefficients
beta <- rnorm(P)
# sampled covariates, group means and fake data
fake <- matrix(rnorm(N * P), ncol = P)
dimnames(fake) <- list(NULL, paste0("x", 1:P))
# fixed effect part and sampled group membership
fake <- transform(
as.data.frame(fake),
theta = fake %*% beta,
g = sample.int(G, N, replace=TRUE)
)
# add random intercept by group
fake <- merge(fake, data.frame(g = 1:G, eta = rnorm(G)), by = "g")
# linear predictor
fake <- transform(fake, mu = theta + eta)
# sample Poisson data
fake <- transform(fake, y = rpois(N, exp(mu)))
# shuffle order of data rows to ensure even distribution of computational effort
fake <- fake[sample.int(N, N),]
# drop not needed row names
rownames(fake) <- NULL
model_poisson <- brm(
y ~ 1 + x1 + x2 + (1 | g),
data = fake,
family = poisson(),
iter = 100, # short sampling to speedup example
chains = 2,
prior = prior(normal(0,1), class = b) +
prior(constant(1), class = sd, group = g),
opencl = opencl(c(0, 0)),
backend = "cmdstanr",
threads = threading(4)
)
summary(model_poisson)