-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathensisagent.py
429 lines (326 loc) · 14.9 KB
/
ensisagent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import random
import math
import os.path
import numpy as np
import pandas as pd
from pysc2.agents import base_agent
from pysc2.lib import actions
from pysc2.lib import features
Max_Barracks = 7 #up to 7
Max_Supply_Depot = 6 #up to 6
_NO_OP = actions.FUNCTIONS.no_op.id
_SELECT_POINT = actions.FUNCTIONS.select_point.id
_BUILD_SUPPLY_DEPOT = actions.FUNCTIONS.Build_SupplyDepot_screen.id
_BUILD_BARRACKS = actions.FUNCTIONS.Build_Barracks_screen.id
_TRAIN_MARINE = actions.FUNCTIONS.Train_Marine_quick.id
_SELECT_ARMY = actions.FUNCTIONS.select_army.id
_ATTACK_MINIMAP = actions.FUNCTIONS.Attack_minimap.id
_HARVEST_GATHER = actions.FUNCTIONS.Harvest_Gather_screen.id
_BUILD_REFINERY = actions.FUNCTIONS.Build_Refinery_screen.id
_TRAIN_MARAUDER = actions.FUNCTIONS.Train_Marauder_quick.id
_BUILD_TECHLAB = actions.FUNCTIONS.Build_TechLab_screen.id #Build_TechLab_quick seems not to work
_BUILD_TECHLABq = actions.FUNCTIONS.Build_TechLab_quick.id
_TRAIN_REAPER = actions.FUNCTIONS.Train_Reaper_quick.id
_TRAIN_SCV = actions.FUNCTIONS.Train_SCV_quick.id
_PLAYER_RELATIVE = features.SCREEN_FEATURES.player_relative.index
_UNIT_TYPE = features.SCREEN_FEATURES.unit_type.index
_PLAYER_ID = features.SCREEN_FEATURES.player_id.index
_PLAYER_SELF = 1
_PLAYER_HOSTILE = 4
_ARMY_SUPPLY = 5
_TERRAN_COMMANDCENTER = 18
_TERRAN_SCV = 45
_TERRAN_SUPPLY_DEPOT = 19
_TERRAN_BARRACKS = 21
_TERRAN_BARRACKSTECHLAB = 37
_TERRAN_BARRACKSREACTOR = 38
_NEUTRAL_MINERAL_FIELD = 341
_NEUTRAL_VESPENEGEYSER = 342 #_GEYSER = 343
_TERRAN_REFINERY = 20
_NOT_QUEUED = [0]
_QUEUED = [1]
_SELECT_ALL = [2]
DATA_FILE = 'sparse_agent_data'
ACTION_DO_NOTHING = 'donothing'
ACTION_BUILD_SUPPLY_DEPOT = 'buildsupplydepot'
ACTION_BUILD_BARRACKS = 'buildbarracks'
ACTION_BUILD_MARINE = 'buildmarine'
ACTION_ATTACK = 'attack'
ACTION_BUILD_REFINERY = 'buildrefinery'
ACTION_BUILD_MARAUDER = 'buildmarauder'
ACTION_BUILD_REAPER = 'buildreaper'
ACTION_BUILD_SCV = 'buildscv'
smart_actions = [
ACTION_DO_NOTHING,
ACTION_BUILD_SUPPLY_DEPOT,
ACTION_BUILD_BARRACKS,
ACTION_BUILD_MARINE,
ACTION_BUILD_REFINERY,
# ACTION_BUILD_MARAUDER, Not working !
ACTION_BUILD_REAPER,
ACTION_BUILD_SCV,
]
for mm_x in range(0, 64):
for mm_y in range(0, 64):
if (mm_x + 1) % 16 == 0 and (mm_y + 1) % 16 == 0:
smart_actions.append(ACTION_ATTACK + '_' + str(mm_x - 8) + '_' + str(mm_y - 8))
# python -m pysc2.bin.agent --map Simple64 --agent pysc2.agents.ensisagent.SparseAgent --agent_race T --max_agent_steps 0 --norender
#JB python -m pysc2.bin.agent --map Simple64 --agent pysc2.agents.SC2Agent.ensisagent.SparseAgent --agent_race T --max_agent_steps 0 --norender
# Stolen from https://github.com/MorvanZhou/Reinforcement-learning-with-tensorflow
class QLearningTable:
def __init__(self, actions, learning_rate=0.1, reward_decay=0.9, e_greedy=0.85): #initialy learning_rate=0.01, reward_decay=0.9, e_greedy=0.85
self.actions = actions # a list
self.lr = learning_rate
self.gamma = reward_decay
self.epsilon = e_greedy
self.q_table = pd.DataFrame(columns=self.actions, dtype=np.float64)
def choose_action(self, observation):
self.check_state_exist(observation)
if np.random.uniform() < self.epsilon:
# choose best action
state_action = self.q_table.loc[observation, :]
# some actions have the same value
state_action = state_action.reindex(np.random.permutation(state_action.index))
action = state_action.idxmax()
else:
# choose random action
action = np.random.choice(self.actions)
return action
def learn(self, s, a, r, s_):
self.check_state_exist(s_)
self.check_state_exist(s)
q_predict = self.q_table.loc[s, a]
if s_ != 'terminal':
q_target = r + self.gamma * self.q_table.loc[s_, :].max()
else:
q_target = r # next state is terminal
# update
self.q_table.loc[s, a] += self.lr * (q_target - q_predict)
def check_state_exist(self, state):
if state not in self.q_table.index:
# append new state to q table
self.q_table = self.q_table.append(pd.Series([0] * len(self.actions), index=self.q_table.columns, name=state))
class SparseAgent(base_agent.BaseAgent):
def __init__(self):
super(SparseAgent, self).__init__()
self.qlearn = QLearningTable(actions=list(range(len(smart_actions))))
self.previous_action = None
self.previous_state = None
self.cc_y = None
self.cc_x = None
self.isTechlab = 0
self.scv_count = 12
self.move_number = 0
if os.path.isfile(DATA_FILE + '.gz'):
self.qlearn.q_table = pd.read_pickle(DATA_FILE + '.gz', compression='gzip')
def transformDistance(self, x, x_distance, y, y_distance):
if not self.base_top_left:
return [x - x_distance, y - y_distance]
return [x + x_distance, y + y_distance]
def transformLocation(self, x, y):
if not self.base_top_left:
return [64 - x, 64 - y]
return [x, y]
def splitAction(self, action_id):
smart_action = smart_actions[action_id]
x = 0
y = 0
if '_' in smart_action:
smart_action, x, y = smart_action.split('_')
return (smart_action, x, y)
def step(self, obs):
super(SparseAgent, self).step(obs)
if obs.last():
reward = obs.reward
if reward == 1:
modreward = reward * 100000
else:
modreward = reward
self.qlearn.learn(str(self.previous_state), self.previous_action, modreward, 'terminal')
if reward == 1:
reponse = 'VICTORY'
if reward == 0:
reponse = 'DRAW'
if reward == -1:
reponse = 'DEFEAT'
file = open("ResultRecord.txt","a")
file.write(str(reponse) + '\n')
file.close()
self.qlearn.q_table.to_pickle(DATA_FILE + '.gz', 'gzip')
self.previous_action = None
self.previous_state = None
self.move_number = 0
return actions.FunctionCall(_NO_OP, [])
unit_type = obs.observation['feature_screen'][_UNIT_TYPE]
if obs.first():
player_y, player_x = (obs.observation['feature_minimap'][_PLAYER_RELATIVE] == _PLAYER_SELF).nonzero()
self.base_top_left = 1 if player_y.any() and player_y.mean() <= 31 else 0
self.cc_y, self.cc_x = (unit_type == _TERRAN_COMMANDCENTER).nonzero()
self.isTechlab = 0
self.scv_count = 12
cc_y, cc_x = (unit_type == _TERRAN_COMMANDCENTER).nonzero()
cc_count = 1 if cc_y.any() else 0
depot_y, depot_x = (unit_type == _TERRAN_SUPPLY_DEPOT).nonzero()
supply_depot_count = int(round(len(depot_y) / 69))
barracks_y, barracks_x = (unit_type == _TERRAN_BARRACKS).nonzero()
barracks_count = int(round(len(barracks_y) / 137))
refinery_y, refinery_x = (unit_type == _TERRAN_REFINERY).nonzero()
refinery_count = int(round(len(refinery_y) / 137))
if self.move_number == 0:
self.move_number += 1
current_state = np.zeros(38)
current_state[0] = cc_count
current_state[1] = supply_depot_count
current_state[2] = barracks_count
current_state[3] = obs.observation['player'][_ARMY_SUPPLY]
current_state[4] = refinery_count
current_state[5] = self.scv_count
hot_squares = np.zeros(16)
enemy_y, enemy_x = (obs.observation['feature_minimap'][_PLAYER_RELATIVE] == _PLAYER_HOSTILE).nonzero()
for i in range(0, len(enemy_y)):
y = int(math.ceil((enemy_y[i] + 1) / 16))
x = int(math.ceil((enemy_x[i] + 1) / 16))
hot_squares[((y - 1) * 4) + (x - 1)] = 1
if not self.base_top_left:
hot_squares = hot_squares[::-1]
for i in range(0, 16):
current_state[i + 6] = hot_squares[i]
raid_squares = np.zeros(16)
ally_y, ally_x = (obs.observation['feature_minimap'][_PLAYER_RELATIVE] == _PLAYER_SELF).nonzero()
for i in range(0, len(ally_y)):
y = int(math.ceil((ally_y[i] + 1) / 16))
x = int(math.ceil((ally_x[i] + 1) / 16))
raid_squares[((y - 1) * 4) + (x - 1)] = 1
if not self.base_top_left:
raid_squares = raid_squares[::-1]
for i in range(0, 16):
current_state[i + 22] = raid_squares[i]
if self.previous_action is not None:
self.qlearn.learn(str(self.previous_state), self.previous_action, 0, str(current_state))
rl_action = self.qlearn.choose_action(str(current_state))
self.previous_state = current_state
self.previous_action = rl_action
smart_action, x, y = self.splitAction(self.previous_action)
if smart_action == ACTION_BUILD_BARRACKS or smart_action == ACTION_BUILD_SUPPLY_DEPOT or smart_action == ACTION_BUILD_REFINERY:
unit_y, unit_x = (unit_type == _TERRAN_SCV).nonzero()
if unit_y.any():
i = random.randint(0, len(unit_y) - 1)
target = [unit_x[i], unit_y[i]]
return actions.FunctionCall(_SELECT_POINT, [_NOT_QUEUED, target])
elif smart_action == ACTION_BUILD_MARINE or smart_action == ACTION_BUILD_MARAUDER or smart_action == ACTION_BUILD_REAPER:
if barracks_y.any():
i = random.randint(0, len(barracks_y) - 1)
target = [barracks_x[i], barracks_y[i]]
return actions.FunctionCall(_SELECT_POINT, [_SELECT_ALL, target])
elif smart_action == ACTION_ATTACK:
if _SELECT_ARMY in obs.observation['available_actions']:
return actions.FunctionCall(_SELECT_ARMY, [_NOT_QUEUED])
elif smart_action == ACTION_BUILD_SCV:
if self.cc_y.any():
return actions.FunctionCall(_SELECT_POINT, [_NOT_QUEUED, [round(self.cc_x.mean()),round(self.cc_y.mean())]])
elif self.move_number == 1:
self.move_number += 1
smart_action, x, y = self.splitAction(self.previous_action)
if smart_action == ACTION_BUILD_REFINERY:
if refinery_count < 2 and _BUILD_REFINERY in obs.observation['available_actions'] and barracks_count == Max_Barracks and supply_depot_count == Max_Supply_Depot:
if self.cc_y.any():
if refinery_count == 0:
unit_x, unit_y = (unit_type == _NEUTRAL_VESPENEGEYSER).nonzero()
if unit_y.any():
#i = random.randint(0, len(unit_y) - 1)
i = int(math.ceil((len(unit_y)/4)))
t_y,t_x = unit_y[i],unit_x[i]
target = [t_y,t_x]
elif refinery_count == 1:
unit_x, unit_y = (unit_type == _NEUTRAL_VESPENEGEYSER).nonzero()
if unit_y.any():
#i = random.randint(0, len(unit_y) - 1)
i = int(round(len(unit_y)/4)) #round originaly math.ceil
t_y,t_x = unit_y[3*i-1],unit_x[3*i-1]
target = [t_y,t_x]
return actions.FunctionCall(_BUILD_REFINERY, [_NOT_QUEUED, target])
if smart_action == ACTION_BUILD_SUPPLY_DEPOT:
if supply_depot_count < Max_Supply_Depot and _BUILD_SUPPLY_DEPOT in obs.observation['available_actions']:
if self.cc_y.any():
if supply_depot_count == 0:
target = self.transformDistance(round(self.cc_x.mean()), -35, round(self.cc_y.mean()), 0)
elif supply_depot_count == 1:
target = self.transformDistance(round(self.cc_x.mean()), -25, round(self.cc_y.mean()), -25)
elif supply_depot_count == 2:
target = self.transformDistance(round(self.cc_x.mean()), -15, round(self.cc_y.mean()), -35)
elif supply_depot_count == 3:
target = self.transformDistance(round(self.cc_x.mean()), -30, round(self.cc_y.mean()), -8)
elif supply_depot_count == 4:
target = self.transformDistance(round(self.cc_x.mean()), -35, round(self.cc_y.mean()), -16)
elif supply_depot_count == 5:
target = self.transformDistance(round(self.cc_x.mean()), -5, round(self.cc_y.mean()), -30)
return actions.FunctionCall(_BUILD_SUPPLY_DEPOT, [_NOT_QUEUED, target])
elif smart_action == ACTION_BUILD_BARRACKS:
if barracks_count < Max_Barracks and _BUILD_BARRACKS in obs.observation['available_actions']:
if self.cc_y.any():
if barracks_count == 0:
target = self.transformDistance(round(self.cc_x.mean()), 15, round(self.cc_y.mean()), -12) #initialy 15,-9
elif barracks_count == 1:
target = self.transformDistance(round(self.cc_x.mean()), 15, round(self.cc_y.mean()), 12)
elif barracks_count == 2:
target = self.transformDistance(round(self.cc_x.mean()), 15, round(self.cc_y.mean()), 25) #y != 30 x is the absciss // x,y=15,25 is the out angle
elif barracks_count == 3:
target = self.transformDistance(round(self.cc_x.mean()), 15, round(self.cc_y.mean()), 0)
elif barracks_count == 4:
target = self.transformDistance(round(self.cc_x.mean()), 28, round(self.cc_y.mean()), -12)
elif barracks_count == 5:
target = self.transformDistance(round(self.cc_x.mean()), 28, round(self.cc_y.mean()), 12)
elif barracks_count == 6:
target = self.transformDistance(round(self.cc_x.mean()), 28, round(self.cc_y.mean()), 0)
return actions.FunctionCall(_BUILD_BARRACKS, [_NOT_QUEUED, target])
elif smart_action == ACTION_BUILD_MARINE:
if _TRAIN_MARINE in obs.observation['available_actions']:
return actions.FunctionCall(_TRAIN_MARINE, [_QUEUED])
elif smart_action == ACTION_BUILD_REAPER:
if _TRAIN_REAPER in obs.observation['available_actions']:
return actions.FunctionCall(_TRAIN_REAPER, [_QUEUED])
elif smart_action == ACTION_BUILD_MARAUDER:
if _BUILD_TECHLAB in obs.observation['available_actions'] and self.isTechlab < 1:
target = self.transformDistance(round(self.cc_x.mean()), -35, round(self.cc_y.mean()), 0)
#target[0] += random.randint(-5,5)
#target[1] += random.randint(-5,5)
print("on lance la recherche TECHLAB en ",target)
self.isTechlab += 1
print ("self.isTechlab = ", self.isTechlab)
return actions.FunctionCall(_BUILD_TECHLAB, [_NOT_QUEUED, target])
#return actions.FunctionCall(_BUILD_TECHLABq, [_NOT_QUEUED])
elif _TRAIN_MARAUDER in obs.observation['available_actions']:
print("l'ordre est disponible !")
return actions.FunctionCall(_TRAIN_MARAUDER, [_QUEUED])
elif smart_action == ACTION_ATTACK:
do_it = True
if len(obs.observation['single_select']) > 0 and obs.observation['single_select'][0][0] == _TERRAN_SCV:
do_it = False
if len(obs.observation['multi_select']) > 0 and obs.observation['multi_select'][0][0] == _TERRAN_SCV:
do_it = False
if do_it and _ATTACK_MINIMAP in obs.observation["available_actions"]:
x_offset = random.randint(-1, 1)
y_offset = random.randint(-1, 1)
return actions.FunctionCall(_ATTACK_MINIMAP, [_NOT_QUEUED, self.transformLocation(int(x) + (x_offset * 4), int(y) + (y_offset * 4))])
elif smart_action == ACTION_BUILD_SCV:
if self.scv_count < 20 and _TRAIN_SCV in obs.observation['available_actions']:
self.scv_count += 1
return actions.FunctionCall(_TRAIN_SCV, [_QUEUED])
elif self.move_number == 2:
self.move_number = 0
smart_action, x, y = self.splitAction(self.previous_action)
if smart_action == ACTION_BUILD_BARRACKS or smart_action == ACTION_BUILD_SUPPLY_DEPOT:
if _HARVEST_GATHER in obs.observation['available_actions']:
unit_y, unit_x = (unit_type == _NEUTRAL_MINERAL_FIELD).nonzero()
if unit_y.any():
i = random.randint(0, len(unit_y) - 1)
m_x = unit_x[i]
m_y = unit_y[i]
target = [int(m_x), int(m_y)]
if barracks_count != Max_Barracks or supply_depot_count != Max_Supply_Depot:
return actions.FunctionCall(_HARVEST_GATHER, [_QUEUED, target])
#return actions.FunctionCall(_HARVEST_GATHER, [_QUEUED, target])
return actions.FunctionCall(_NO_OP, [])
elif smart_action == ACTION_BUILD_REFINERY:
return actions.FunctionCall(_NO_OP, [])
return actions.FunctionCall(_NO_OP, [])