-
The LLAMAS dataset can be downloaded in their official website.
-
Change the
LLAMAS_ROOT
in configs/lane_detection/common/datasets/_utils.py to your dataset's location.. -
Pre-processing:
python tools/llamas_list_convertor.py
LLAMAS dataset provides both color and gray images. We use color images in our framework.
- Prepare official evaluation scripts:
cd tools/llamas_evaluation
mkdir output
Then change data_dir
to your LLAMAS base directory in autotest_llamas.sh. Mind that you need extra ../../ if relative path is used.
- If you use Bézier curve methods, download Bézier curve GT from here and unzip them in
LLAMAS_ROOT/bezier_labels/
. More info on curves are in CURVE.md.
<LLAMAS.BASE_DIR>
├─ color_images
│ ├─ test
│ ├─ train
│ └─ valid
├─ labels
│ ├─ train
│ └─ valid
├─ laneseg_labels
│ ├─ train
│ └─ valid
├─ bezier_labels
│ ├─ train_3.json
│ └─ ...
└─ lists
The test set' s annotations are not public.
{
"image_name": "...",
"projection_matrix": [[x11, 0, x13], [0, x21, x23], [0, 0, 1]],
"lanes":
[
{
"lane_id": "...",
"markers":
[
{
"lane_marker_id": "...",
"world_start":{"x":"...", "y": "...", "z": "..."}, "pixel_start": {"x": "...", "y": "..."},
"world_end":{"x":"...", "y": "...", "z": "..."}, "pixel_start": {"x": "...", "y": "..."}}
},
...
]
},
...
]
}
LLAMAS dataset employs json files to save annotations. Each image corresponds to a json file.
We utilize the format of culane to reformat LLAMAS dataset.
We use the script provided by Xingang Pan to generate per-pixel labels.
The generated labels can be downloaded from Google Drive.